

Hello. Essays violate the CHECKLIST at *Grade Peril!***Y1:** Show no work.**a** #14^P191. $\text{Ord}(14 + \langle 8 \rangle) =$ _____.**b** #26^P191. $G/H \cong$ _____.**c** #30^P191. $U(165) \cong$ _____, _____, _____.**d** There exist groups P, A, B with $P \times A \cong P \times B$, yet $A \not\cong B$. one: **True** **False****e** Let $G := (\mathbb{Z}_2, +)$ and $H := \text{Aut}(G \times G \times G)$. Then $\text{Ord}(H) =$ _____. This H is abelian: **True** **False****f** Group \mathbb{S}_{11} has elts (in std.CN)

$$\begin{aligned} \alpha &:= (1 2 3) (4 5 6 7) (8 9 10 11) ; \\ \beta &:= (1 3 2) (4 5 7 6) (8 9 11 10) . \end{aligned}$$

Both α and β are in \mathbb{A}_{11} : **True** **False**
 Elts α and β are conjugate in \mathbb{S}_{11} : **True** **False**
 Elts α and β are conjugate in \mathbb{A}_{11} : **True** **False**

g #10^P255. In \mathbb{Z}_7 : _____, _____, _____, _____.**Y2:** #12^P240; a ring with unit. (Jog: Non-abel, 16 elts)**Y3:** Prove #56^P191, with particular attention to (d).
(Jog: Properties of commutator subgp.)**Y4:** Generalize example #16^P208 to:THEOREM: For primes $p < q$ such that FOO , the only order- pq group is cyclic. Argue analogously to class: There exists an order-7 elt in G There is exactly one order-7 subgp, K $N_G(K) = G$ Centralizer $C_G(K)$ is all of G . Make FOO ASiAP.**i** List four pairs $p < q$ where your thm applies (call such, a *good* pair), four bad pairs, and an ∞ -family where even the conclusion fails.**ii** Use Dirichlet's Thm (stated in #35^P227) to show there are ∞ -ly many primes q so that $5 < q$ is good. Generalize.**iii**Use Bertrand's Postulate to prove that there are arbitrarily long chains $p_0 < p_1 < \dots < p_L$, where each pair $p_{j-1} < p_j$ is good.**Y5:****a** Let G denote TTT-Aut(4×4); use **C** for a corner/center cell, and **E** for an edge cell. After FM=**C** (First Move at **C**), how many *Really Different* second moves are there? –and how many of each *RD*-type? Ditto for FM=**E**. Compute $\text{Stab}(\mathbf{C})$ and $\text{Stab}(\mathbf{E})$.

Explicitly use Orb-Stab Thm to check.

bWith G acting on itself by conjugation, either compute the size of each conjugacy-class, or of each pt-centralizer. Use the *class-eqn* (P403) to compute $\text{Ord}(Z(G))$.**γ**With $G := \text{TTT-Aut}(4 \times 4 \times 4)$, i.e. Cubic, do parts (α) and (β), until you run out of stamina. Can you generalize?

End of Y-Home

Y1: _____ 135pts**Y2:** _____ 15pts**Y3:** _____ 65pts**Y4:** _____ 125pts**Y5:** _____ 155pts**Total:** _____ 495pts**HONOR CODE:** *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).* _____ *Name/Signature/Ord***Ord:** _____**Ord:** _____**Ord:** _____