

Staple!

Name: _____ Ord: _____

NT-Cryptography IndividualOP-X Prof. JLF King
MAT4930 0329 Fri, 21Apr2023

Cryp IOP is due **2PM, Thurs., 27Apr2023**, slid *completely* under my office door, 402 LITTLE HALL. This sheet is “Page 1/ N ”, and you’ve labeled the rest as “Page 2/ N ”… “Page N / N ”.

Essays must be TYPED, and (preferably) double-spaced. Use the Print/Revise cycle to produce good, well thought out, essays. Do not restate the problem; just solve it.

X1: In ring $\Gamma := \mathbb{Z}_7[x]$, consider polynomials

$$\begin{aligned} r_0 &:= x^4 - 2x^3 + x - 2, \\ r_1 &:= x^3 + 3x^2 - 3x. \end{aligned}$$

Using symmetric residues: Compute (and exhibit) an LBolt table which computes polys $\mathcal{G} := \text{GCD}(r_0, r_1)$ and $S.T$ s.t $\mathcal{G} = Sr_0 + Tr_1$. [The table is tiny; can be computed by hand.]

Extra credit: Write your own program (showing the code, and two sample runs over different primes) which computes and prints LBolt tables over $\mathbb{Z}_p[x]$, where p is prime.

X2: For alphabet size $\Gamma \in [2.. \infty)$, consider a *finite*, complete (Kraft-sum equals 1) UD-code \mathcal{C} . Prove that $R \equiv_{\Gamma-1} 1$, where R is the number of codewords.

X3: The building block of a cryptosystem uses N -Serial numbers, for large values of N . (Defns are below.)

i] Prove: For each positive integer N , there exists an N -Serial number.

ii] Produce (with proof, 'natch) a 5-Serial number $V = \dots$. (A little extra credit: Can you prove or computer-search that your V is the *smallest* 5-Serial number?)

Defns. An posint S is *Cubish* if it is divisible by some member of $\{8, 27, 64, 125, 216, \dots, k^3, \dots\}$; otherwise S is *Flat*. (E.g 0, 162, 375 are Cubish, and 1, 12, 90, 36 are Flat.)

For N, S posints, our S is “*N-Serial*” if *each* member of $\{S + j\}_{j=0}^{N-1}$ is Cubish. [E.g, $S=80$ is 2-Serial, since $8 \nmid 80$ and $27 \nmid 81$, but 80 is not 3-Serial, as no cube divides 82 . Another example: 375 is 2-Serial but not 3-Serial.]

X4: Prime $q \equiv_4 1$ is such that $p := 1 + 2q$ is prime. Prove that 2 is a p -primroot. [E.g, $(q, p) = (5, 11), (29, 59), (41, 83), (53, 107), (89, 179), (113, 227), \dots$]

[Hint: The number of p -primroots is $\varphi(\varphi(p))$. State and prove lemmas about the possible mult-orders of NQRs and QRs mod- p .]

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: _____

Folks, I've had a great time learning *NT & Codes* with you. It's been a pleasure having a lively (and funny) class of Enthusiastic NTers. Stop by in future semesters for Math/chess/frisbee/pickleball...

Cheers, Prof. K