



Staple!

Abstract Algebra    Class-W    Prof. JLF King  
MAS4301 3249    Wednesday, 26Oct2022

Ord: \_\_\_\_\_

**Hello.** Let  $F$  and  $R$  be the *flip* and *rotation* in the dihedral group  $\mathbb{D}_N$ , with  $F^2=e$ ,  $R^N=e$  and  $RFRF=e$ . Use  $R^j$  and  $R^jF$  as the std. form of each element in  $\mathbb{D}_N$ . Symbol  $\mathbb{Z}_N$  denotes the *cyclic gp*  $(\mathbb{Z}_N, +, 0)$ .

A perm of cyc-sig  $\lceil 1^3, 5^2 \rceil$  has three 1-cycles and two 5-cycles.

**W1:** Short answer. Show no work. Write LARGE.

Write **DNE** if the object does not exist or the operation cannot be performed. NB:  $\mathbf{DNE} \neq \{\} \neq 0$ .

**a** For a LOR (letter-of-recommendation), Prof. K requires two courses, or a Special Topics or graduate course Circle:

Yes

True

Darn tootin'!

**b** In dihedral group  $G := \mathbb{D}_{24}$  generated by flip  $F$  and rotation  $R$ , consider the subgroup  $H := \langle F, R^4 \rangle_G$ . The index of  $H$  in  $G$  is  $|G:H| =$  \_\_\_\_\_.

**c** Binomial  $\binom{6}{2} =$  \_\_\_\_\_. So a  $\lceil 3^6 \rceil$ -perm  $\beta \in \mathbb{S}_{18}$  has \_\_\_\_\_ many square-roots of sig= $\lceil 6^1, 3^4 \rceil$ . A cube-root of  $\beta$  has signature =  $\lceil$  \_\_\_\_\_  $\rceil$ .

**d** In  $\mathbb{S}_{13}$ , the maximum possible order of an element is  $\text{MaxOrd}(\mathbb{S}_{13}) = \text{LCM}(\text{_____}) =$  \_\_\_\_\_.

**e** Sequence  $[1, 2, 3, 4, 5, 6, 7]$  is fed into a shuffling machine, then again, then again. The resulting perm,  $\gamma := \alpha^3 \in \mathbb{S}_7$ , is sequence  $[2, 4, 1, 6, 3, 7, 5]$ . So just *one* shuffle put  $[1, 2, 3, 4, 5, 6, 7]$  in order \_\_\_\_\_.

OYOP: In grammatical English *sentences*, write your essays on every 2<sup>nd</sup> line (usually), so I can easily write between the lines.

**W2:** For  $N = 3, 4, 5, \dots$ , prove each perm  $\beta$  in  $\mathbb{A}_N$  [the  $N^{\text{th}}$  alternating gp] can be written as a composition [L-to-R] of 3-cycles. [The cycles need not be disjoint.]

Define  $\alpha := \langle 0, 1, 2, 3, 4, 5 \rangle \langle 6, 7 \rangle$  in  $\mathbb{A}_8$ . As a product of 2-cycles,  $\alpha =$  \_\_\_\_\_.

[The cycles need *not* be disjoint.] As a product of 3-cycles,  $\alpha =$  \_\_\_\_\_.

**W3:** For groups  $G \supset H$ , formally state Lagrange's theorem.

Carefully prove Lagrange's thm, starting with "Proof:".

End of Class-W

**W1:** \_\_\_\_\_ 100pts

**W2:** \_\_\_\_\_ 55pts

**W3:** \_\_\_\_\_ 40pts

**Total:** \_\_\_\_\_ 195pts

NAME: \_\_\_\_\_

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor or TA."

Signature: \_\_\_\_\_