

Staple!

Name: _____

Ord: _____

Plex

MAA4402 2838

IndividualOP-V

Prof. JLF King
Wedn, 17Apr2024PLEX IOP is due **2PM, Thurs., 25Apr2024**, slid *completely* under my office door, 402 LITTLE HALL.Print [this sheet](#), which is “Page 1/N”, and number your write-up as “page 2/N”, “page 3/N” … “Page N/N”.**V1:** Short answer. Show no work.

a

Entire fnc H is non-zero on SCC S . In \mathbb{S} , our H has exactly two zeros, at $\mathbf{p} \neq \mathbf{q}$, with multiplicities $m, n \in \mathbb{Z}_+$.Integral $\frac{1}{2\pi i} \oint_S \frac{z^k \cdot H'(z)}{H(z)} dz =$ _____,for $k = 1, 2, 3, \dots$ [Hint: Examine the proof of TAP and Rouché.]

b

Let $h(z) := \exp(\frac{1}{z}) \cdot \exp(\frac{1}{3z})$. Then $\text{Res}(h(z)) =$ _____, And $\text{Res}(z \cdot h(z)) =$ _____.

c

Consider entire function $G(z) := \sum_{n=0}^{\infty} a_n \cdot [z - 8]^n$.

Then

$$\text{Res}\left(\frac{G(z)}{z^4}\right) = \sum_{n=K}^{\infty} a_n \cdot W_n, \quad \text{where}$$

 $K =$ _____ $\in \mathbb{N}$ and $W_n =$ _____.[Number W_n is a fnc of n , and does not mention a_0, a_1, a_2, \dots . You may use binomial coefficients in expressing W_n .]*Essays must be TYPED, and (preferably) double-spaced. Use the Print/Revise cycle to produce good, well thought out, essays. Do not restate the problem; just solve it.***V2:** Use a keyhole contour to carefully compute

$$J := \int_0^{\infty} \frac{x^{1/4}}{[x+1]^3} dx,$$

showing all the steps. Prove that the asymptotic contribution of the integral along the two circles, is zero. Use the branch of Arg (as in class) that takes values in $[0, 2\pi]$.

[Hint: As models, use the two examples in PlexNotes, as well as the GCIF to compute the appropriate residues.]

V3: With $U := \text{Sph}_1(0)$ the unit circle, $\mathbb{B} := \mathring{U}$ the open ball, suppose h is holomorphic on \mathring{U} , is non-constant, and $h(U) \subset U$. Prove that $h(\mathbb{B}) \supset \mathbb{B}$ as follows:

i

Use Max-modulus Principle (and...) to prove $\exists p \in \mathbb{B}$ with $h(p) = 0$. [FTSOContradiction...]

ii

Given target $\tau \in \mathbb{B}$, use Rouché to prove $\exists q \in \mathbb{B}$ with $h(q) = \tau$.**V4:** For $N = 4, 5, 6, \dots$, define open annulus

$$\mathbf{A}_N := \left\{ z \in \mathbb{C} \mid N < |z| < N+1 \right\}, \quad \text{and}$$

$$T_N(z) := z^N + Nz + [2N^2 + N^N].$$

Polynomial $T_N()$ has _____ roots in \mathbf{A}_N .Prove your result, using Rouché's thm, carefully specifying what contours you are using, giving a detailed, complete argument establishing the inequalities you need. [In your essay, use $C_k := \text{Sph}_k(0)$ for the k^{th} -circle.]Provide good, LARGE, Labeled pictures of the annulus, the contours and T_N -zeros, at least for $N=4$ and $N=5$.Something extra?: What happens for $N = 1, 2, 3$? *Can you*: Generalize the problem in a mathematically interesting way? Give me more information of the locations of the roots, as a fnc of N ?**V5:** For all $z \in \mathbb{C}$, entire fnc f has

$$|\text{Re}(f(z)) - \text{Im}(f(z))| \leq 4.$$

Prove that f is constant. [Liouville's thm is useful.]**V6:** Function f is *nice* if f is analytic on open ball $\mathbb{B} := \text{Bal}_1(0)$, and $f(0) = 3$. A radius $0 < r < 1$ is *good* if some point w on circle $C_r := \text{Sph}_r(0)$ satisfies $|f(w)| = 3$.

i Produce a *specific* nice fnc g with *bad* radius $b < 1$.

ii Main problem: Prove each nice fnc h has some *positive* radius $\rho < 1$ for which: *Every* radius $r < \rho$ is good. [Hint: Use ideas related to the Maximum-modulus principle. You may want the Intermediate-value theorem applied to some real-valued function.]

iii Create a *continuous* $\varphi: \mathbb{B} \rightarrow \mathbb{C}$ with $\varphi(0) = 3$ for which *every* positive radius is *bad*.

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor (or his colleague).*

Ord: _____

Folks, I've had a great time learning Complex Analysis with you. Stop by in future semesters for Math/chess/pickleball. Cheers, Prof. (Per)PLEX-ed