

Due: Monday, 27Mar.

Class-V will take place on Wednesday, 29Mar.

Fill-in every blank on this sheet. Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.

This sheet is the *first-page* of your write-up.**V1:** Your goal is to prove:

†: The Sixteen Thm. For each oddprime p , the congruence $x^8 \equiv_p 16$ admits a solution.

In your WU, you may use \sim for \equiv_4 and \approx for \equiv_8 , if you wish. But use \equiv_p or \equiv for congr-mod- p .

α FTSOC, suppose you have a p with no solution to $x^8 \equiv_p 16$. Prove that $2 \in \text{NQR}_p$ and $-1 \in \text{QR}_p$. Use LSTh to compute $\langle p \rangle_8$ as a non-negative residue.

β Let r be a p -sqroot of -1 . Use LST to prove that $r \in \text{QR}_p$. But use a different part of LST to prove that $r \in \text{NQR}_p$. *Contradiction, QED.*

γ Give an example of a 2 digit prime q := with $2 \in \text{NQR}_q$ and $-1 \in \text{QR}_q$. Using symmetric residues, $\text{QR}_q = \{ \dots \}$ and

$\text{NQR}_q = \{ \dots \}$. Finally, $\left[\dots \right]^8 \equiv_q 16$.

Give an example of a 3 digit prime p := with $2 \in \text{NQR}_p$, and values $r := \dots$ and $s := \dots$ satisfying $r^2 \equiv_p -1$ and $s^2 \equiv_p r$.

Defn. An odd integer k is “4Pos” if $k \equiv_4 +1$; is 4Neg if $k \equiv_4 -1$; is 8Near if $k \equiv_8 \pm 1$ (either); is 8Far if $k \equiv_8 \pm 3$. \square

1: Legendre-symbol Thm. Fix an odd prime p and $H := \frac{p-1}{2}$. Use $\langle \cdot \rangle_p$ for symmetric residue, selecting from $[-H..H]$. For each integer z :

a: The (symmetric) residue $\langle z^H \rangle_p$ equals $\left(\frac{z}{p} \right)$. Euler criterion.

b: For x, z integers: $\left(\frac{x}{p} \right) \cdot \left(\frac{z}{p} \right) = \left(\frac{xz}{p} \right)$. I.e, mapping $x \mapsto \left(\frac{x}{p} \right)$ is totally-multiplicative. [I.e, $x \mapsto \left(\frac{x}{p} \right)$ is a semigroup-hom $(\mathbb{Z}_p, \cdot, 1) \rightarrow (\{\pm 1, 0\}, \cdot, 1)$, hence is a group-hom $(\Phi_p, \cdot, 1) \rightarrow (\{\pm 1\}, \cdot, 1)$. This holds also for $p=2$.]

Team: V

c: Value $-1 \in \text{QR}_p$ IFF p is 4Pos, i.e, $\left(\frac{-1}{p} \right) = [-1]^{\frac{p-1}{2}}$.

Courtesy Wilson's Thm, value $r := [H!]$ is a mod- p sqroot of -1 . i.e, is a p -RONO,¹ when $p \in 4\text{Pos}$.

d: The number 2 is a p -QR IFF p is 8Near, that is, $p \equiv_8 \pm 1$. I.e, $\left(\frac{2}{p} \right) = [-1]^{\frac{p^2-1}{8}}$. \diamond

V2: Below, p is oddprime, $\langle \cdot \rangle$ means $\langle \cdot \rangle_p$, $H := \frac{p-1}{2}$, and target $\mathbf{A} \perp p$.

For large p , we quickly determine if $\mathbf{A} \in \text{QR}_p$; simply compute $\langle \mathbf{A}^H \rangle$ by repeated-squaring and ask $\langle \mathbf{A}^H \rangle \stackrel{?}{=} 1$. But it may be time-consuming to actually *find* a square-root of \mathbf{A} . Here are three special cases where it is quick. [Relevant are LST(a,b,c,d) and Wilson's thm. And...?]

α LST tells us that $p \equiv_4 1$ implies $-1 \in \text{QR}_p$. Prove that $H!$ (i.e, H factorial) is a mod- p sqroot of -1 .

β Now suppose $p \equiv_4 -1$ and $\mathbf{A} \in \text{QR}_p$. Prove that $\mathbf{A}^{\frac{p+1}{4}}$ is a mod- p sqroot of \mathbf{A} .

γ Finally, consider $p \equiv_8 5$ and $\mathbf{A} \in \text{QR}_p$. Prove that either

$$R := \mathbf{A}^{\frac{p+3}{8}} \quad \text{or} \quad S := 2\mathbf{A} \cdot [4\mathbf{A}]^{\frac{p-5}{8}}$$

is a mod- p sqroot of \mathbf{A} .

¹RONO is “(square-)Root Of Negative-One”.

V3: Define $T := 2331717$ and $B := 10953506281$.

a Compute Jacobi-symbol $\left(\frac{T}{B}\right)$ using non-negative residues, showing where the sign changed due to *QuadRecip* or *powers-of-two*.

Redo the computation using symmetric-residues, showing sign changes due to: *QuadRecip* or *powers-of-two* or *negative top number*.

b Use Pollard ρ to factor B , using map $x \mapsto \langle x^2 + 1 \rangle_B$ and various seeds. Do you find a factor before time 1000?

c Determine whether T is a mod- B quadratic-residue. If it is, can you find a square-root?

z Implement the Elias- δ -code. Encode $N := 513$, briefly describing the steps.

For all of the above, include your computer code, reasonably typeset (in a large font) and *carefully commented*.

V1: _____ 155pts

V2: _____ 105pts

V3: _____ 90pts

Total: _____ 350pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/Ord*

Ord: _____

Ord: _____

Ord: _____