

NT-Cryptography  
MAT4930 0329

Home-U

Prof. JLF King  
Wedn., 15Feb2023Due: Monday, 20Feb. no later than 11:30AM, on Wedn., 22Feb., slid completely under my office door, LIT402.Fill-in every blank on this sheet. This sheet is the *first-page* of your write-up.

**U1:** Alice publishes her ElGamal modulus  $U := 4094957$ , gen.  $G := 399510$ , and her public key  $A := \langle G^\alpha \rangle = 859311$ , where  $\alpha$  is Alice's private key, and  $\langle \cdot \rangle$  means  $\langle \cdot \rangle_U$ . Bob transmits his public key  $B := \langle G^\beta \rangle = 856746$ . Each computes  $\sigma = \langle G^{\alpha\beta} \rangle$ , the secret key. Bob skipped class on *known plaintext* day, and erroneously ElGamal's messages  $m_0, \dots, m_9$  to Alice, but *reusing*  $\beta$ . He transmits

$C_0 := 2501615 \quad C_1 := 1685151 \quad C_2 := 20561 \quad C_3 := 2079233$   
 $C_4 := 2287623 \quad C_5 := 2428749 \quad C_6 := 990351 \quad C_7 := 3630623$   
 $C_8 := 39151 \quad C_9 := 1225900$ ; ten ciphertexts  $C_j := \langle \sigma \cdot m_j \rangle$ .

Eve knows Bob sent his [crummy] password,  $M_K := 11111$ , and she tricked him into sending  $M_C := 4930$ , their Crypto course number. Bob's error, together with the Known and Chosen plaintexts, allow you, Eve, to compute  $\sigma = \langle \cdot \rangle$  and recover all ten plaintexts. Eve used *what* property of  $M_C$  that  $M_K$  might not possess?

For  $b$ -bit modulus  $U$ , with Bob sending  $N$  messages [one known, one chosen plaintext], what is the running time  $R(b, N)$  of Eve's algorithm to compute  $\sigma$ ?

**U2:** RSA uses a modulus  $N$ , (en/de)cription exponents  $E, d$  so that  $E \cdot d = 1 + k\varphi(N)$ , for some positint  $k$ . In class, we restricted Bob's message  $m$  to be  $\perp N$ , then used EFT to conclude that  $m^{Ed} \equiv_N m$ .

Pair  $(m, N)$  is *nice* if:  $\forall k \in \mathbb{N}: m^{1+k\varphi(N)} \equiv_N m$ .  
 Posint  $N$  is *great* if  $(m, N)$  is nice for *every* integer  $m$ .

**i** Prove that each  $N := pq$ , with  $p < q$  primes, is great.  
**ii** Characterize, with proof, the set of great numbers.

**U3:** **i** Use Pollard- $\rho$  to find a nt-factor of  $M := 59749$ , using seed  $s_0 := 7$  and map  $f(x) := \langle 1+x^2 \rangle_M$ . Make a nice table, labeled

| Time  | Tortoise | Hare  | $s_{2k} - s_k$ | GCD(??) |
|-------|----------|-------|----------------|---------|
| ..... | .....    | ..... | .....          | .....   |

—but *replace* the “??” with the correct expression. You found non-trivial factor  $E :=$  .

The hare Hits into the tortoise at time  $H :=$  .Repeat, showing the table for  $s_0 := 24$ . Experiment with different seeds; what is the typical running time? [RT means  $\#(f\text{-evals})$ ]. How is it related to the factor you find?

**ii** A seed  $s$  determines a *tail*; the smallest natnum  $T$  for which there is a time  $n > T$  with  $f^n(s) = f^T(s)$ . The smallest such  $n$  is  $T+L$  where  $L$  is the *period*. Derive (picture+reasoning) a formula for the hitting time  $H(T, L)$ . [Hint:  $H(0, L) = L$ .]

**iii** Produce a Floyd-like algorithm that computes both  $T$  and  $L$ . The number,  $N$ , of  $f$ -evaluations is upper-bounded by some small constant times  $T+L$  (=arclength of  $\rho$ ). How small can you get  $N(T, L)$ ? [Hint: When  $T = 0$ , Floyd's Tortoise-Hare alg. uses  $3L$  evaluations.] Your Floyd-like alg. may be able to upper-bnd the *f-eval #* in form  $\alpha T + \beta L$ , for specific posints  $\alpha, \beta$ . [Is  $T=0$  a special case?]

**U4:** Bob's RSA modulus is  $M := p \cdot q$ , where  $p < q$  are b-bit primes. Doofusly, Bob wrote value  $F := \varphi(M)$  on a paper napkin, which Eve found. Describe Eve's algorithm to rapidly compute  $p$  in time  $O(b^n)$ , where  $n =$  .

[Assume, for every  $k$ -bit target  $T$ , that  $\text{sqroot,remainder } s, r \in \mathbb{N}$  satisfying  $[s^2] + r = T < [s+1]^2$ , can be found in  $O(k^2)$  time.]

End of Home-U

|            |       |        |
|------------|-------|--------|
| <b>U1:</b> | _____ | 115pts |
| <b>U2:</b> | _____ | 115pts |
| <b>U3:</b> | _____ | 85pts  |
| <b>U4:</b> | _____ | 35pts  |

**Total:** \_\_\_\_\_ 350pts

**HONOR CODE:** *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).* \_\_\_\_\_ *Name/Signature/Ord* \_\_\_\_\_

Ord: \_\_\_\_\_

Ord: \_\_\_\_\_

Ord: \_\_\_\_\_