

Plex
MAA4402 3509

Class-U

Prof. JLF King
Wedn, 10Apr2024**NB.** For short-answer: Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.Let **holom** abbreviate “holomorphic”, and **harm.fnc** abbreviate “harmonic function”.**U1:** Short answer. Show no work.**a** EoS 2024 *Games Party*, from 12:50pm–4:30pm, will take place at *Pascal's Cafe* on Wedn, 24Apr.

Circle Yes! True! I'll-bring-a-game!

b The visual representation of \mathbb{C} is sometimes called “the ? plane”, where ? is Circle: Unreal Higher Snakes-on-a Argand Krypton Rayon Xenon Euler Goursat Liouville No-need-to-x y-com Air Sea De Rain-in-Spain-stays-mainly-on-the .**c** Let $f(z) := z^4 \exp(2/z)$.Then residue $\text{Res}(f, 0) =$ _____.[Hint: Write the PS for e^w , then plug in $2/z$ for w . Multiply the resulting Laurent Series by z^4 . You may use the factorial symbol in expressing your answer. Then simplify your answer.]**d** Let C be SCC $\text{Sph}_7(0)$, a circle of radius 7. Then

$$\oint_C \frac{\cos(2z)}{[z-5]^4} dz =$$
 _____.

[Answer may be written as a product, using powers and factorials and $\sin()$ and $\cos()$.]**e** Define $f(x+iy) := xy + ix$. Let L be the line-segment from the origin to $2+i$. Then $\int_L f(z) dz =$ _____.

f $\sum_{n=3}^{\infty} \left[\frac{1+2i}{3} \right]^n =$ _____ + $\left[i \cdot \right]$.

U2: Short answer. Show no work.**g** For a SCC C , suppose fncs f, g , analytic on \widehat{C} , satisfy that $|f(z)| \geq |g(z)|$ for every $z \in C$. If $f+g$ has fewer zeros in \widehat{C} than f does, then there must exist a point $w \in C$ such that _____.**h** Let $f(z) := z^5 + 3z^4 + 6z$, and $C_r := \text{Sph}_r(0)$. Our f has _____ zeros enclosed by C_1 , and _____ zeros in annulus $A := \text{Ann}_2^1(0)$.**i** In ball $\text{Bal}_1(0)$, there are _____ solutions to

$$2z^9 - z^6 - 7z^3 + z = 2. \quad [\text{Hint: Rouché's thm.}]$$

j Gamma fnc: $\Gamma(7) =$ _____ and $\Gamma(\frac{7}{2}) =$ _____.For all real $x > 1$, our $\Gamma()$ function satisfies recurrence relation $\Gamma(x) =$ _____.**U1:** _____ 120pts**U2:** _____ 95pts**Total:** _____ 215pts

NAME: _____

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: _____