

NT-Cryptography
MAT4930 0329

Class-U

Prof. JLF King
Wedn., 22Feb2023Please fill-in every *blank* on this sheet.**U5:** Show no work. Write DNE if the object does not exist or the operation cannot be performed. \mathcal{NB} : DNE $\neq \{\} \neq 0$.**a** Prof. King thinks that submitting a ROBERT LONG PRIZE ESSAY [typically 2 prizes, \$500 total] is a *really good idea*. A ten-page essay is fine. Date for the emailed-PDF is Thurs., 30 Mar., 2023.

Circle: Yes True Résumé material!

b RSAing, Bob publishes $N := pq$, with $p < q$ distinct primes, but foolishly writes $F := \varphi(N)$ on a napkin that Eve sees. Eve quickly computes poly $Ax^2 + Bx + C$ whose roots are the hidden p and q . As formulas in N and F : $A = \underline{\dots}$; $B = \underline{\dots}$; $C = \underline{\dots}$.**c** The Huffman code with letter-weights4: \mathcal{H} 5: \mathcal{O} 6: \mathcal{A} 7: \mathcal{C} 12: \mathcal{E} 32: \mathcal{D} codes these to bitstrings: $\mathcal{H}: \underline{\dots}$ $\mathcal{O}: \underline{\dots}$
 $\mathcal{A}: \underline{\dots}$ $\mathcal{C}: \underline{\dots}$ $\mathcal{E}: \underline{\dots}$ $\mathcal{D}: \underline{\dots}$.Bitstring 101110101111001111000 decodes to, answering: "What is Alice's nickname?"
 $\underline{\dots}$ **U5:** _____ 145pts**U6:** _____ 45pts**Total:** _____ 190pts

Please PRINT your name and ordinal. Ta:

Ord:
 $\underline{\dots}$ **HONOR CODE:** "I have neither requested nor received help on this exam other than from my professor."Signature:
 $\underline{\dots}$ **d** Consider the three congruences C1: $z \equiv_{15} 11$, C2: $z \equiv_{21} 5$, and C3: $z \equiv_{70} 61$. Let z_j be the *smallest natnum* [or DNE] satisfying (C1) $\text{All } (C_j)$. Then $z_2 = \underline{\dots}$; $z_3 = \underline{\dots}$.**e** With $A := 29$, $B := 20$, $U := A \cdot B = 580$, let \mathbf{J} be $(-290 \dots 290]$. There is a ring-iso $g: \mathbb{Z}_A \times \mathbb{Z}_B \rightarrow \mathbb{Z}_U$ sending (α, β) to $\langle G\alpha + H\beta \rangle_U$, using magic numbers $G = \underline{\dots} \in \mathbf{J}$ and $H = \underline{\dots} \in \mathbf{J}$. A mod- U root of poly $f(x) := 20 \cdot [x + 10]^3 + 29 \cdot [x - 2]$ is $(\underline{\dots}, \underline{\dots}) \xrightarrow{g} \underline{\dots} \in \mathbf{J}$.