

Plex
MAA4402 3509

Class-T

Prof. JLF King
Wednesday, 06Mar2024**NB.** For short-answer: Write **DNE** if the object does not exist or the operation cannot be performed. NB: $\mathbf{DNE} \neq \{\} \neq 0$.Let **holom** abbreviate “holomorphic”, and **harm.fnc** abbreviate “harmonic function”.**T1:** Short answer. Show no work.

a

For a LOR (letter-of-recommendation), Prof. K requires two courses, or a Special Topics [e.g, my NUMBER THEORY AND CRYPTOGRAPHY], or graduate course Circle:

Yes

True

Darn tootin'!

b

Prof. King has senior-citizen eyes, and *cannot read small handwriting.* Circle

True!

Yes!

Who??

c

 $\text{Res}\left(\frac{e^{2z}}{[z-5]^4}, z=5\right) =$ _____.

d

Write holomorphic $h(x+iy)$ as $u(x,y) + i v(x,y)$.Then: Sum $6u + 3v$ is harmonic: AT AF NeiA prod. of two harm.fncs is harmonic. AT AF NeiIf functions $f, g: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ are each harmonic, then sum $H(x+iy) := f(x,y) + ig(x,y)$ is holom. AT AF NeiFnc $\alpha(x+iy) := x^2 + [2xyi] - y^2$ is holomorphic. TF

e

Power series $f(z) = \sum_{n=3}^{\infty} \frac{[3z]^n}{n+7}$ has
 $\text{RoC} =$ _____ . And $\text{BoC} =$ _____ .OYOP: In grammatical English **sentences**, write each essay on every 2nd line (usually), so that I can easily write between the lines.**T2:** Let $f(z) := z^4 + 5z^2 + 4$, mapping $\mathbb{C} \rightarrow \mathbb{C}$. Reciprocal $H(z) := 1/f(z)$ has, in the upper half-plane, two poles **p** and **q**, where **p** lies closer to the origin than **q**.So $\text{Res}(H, \mathbf{p}) =$ _____ and $\text{Res}(H, \mathbf{q}) =$ _____ .Our **D**-contour technique applies to **H**.Thus $J := \int_{-\infty}^{+\infty} \frac{1}{x^4 + 5x^2 + 4} dx =$ _____ .

Give a full proof, illustrated with large, labeled diagrams.

T3: Below, $h: \mathbb{C} \rightarrow \mathbb{C}$, and $S \subset \mathbb{C}$ is a **SCC**, and $w \in \mathbb{C}$ is an *appropriate* point.a Detailing the conditions needed on **h**, **S** and **w**, carefully state the Cauchy Integral Formula Theorem.b Recall the Cauchy Homotopy Thm: Suppose closed-curves **S** and **R** are homotopic in an open set on which a fnc **f** is holomorphic. Then $\oint_S f = \oint_R f$.

Use the above CHT to give a formal proof of the Cauchy Integral Formula Theorem. Also draw LARGE pictures showing the ideas in the proof.

T1: _____ 105pts**T2:** _____ 55pts**T3:** _____ 55pts**Total:** _____ 215pts

NAME: _____

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: _____