

Linear Algebra
MAS4105 3247

Class-R

Prof. JLF King
Wednesday, 27Sep2023

Hello. Use L_M for the lefthand-action of matrix M . Use B^t for the transpose of B . When working over \mathbb{Z}_p , state answers using *symmetric residues*, e.g, in \mathbb{Z}_{13} , answers should lie in $[-6..6]$.

Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.

R1: Show no work.

z

Prof. King thinks that submitting a ROBERT LONG PRIZE ESSAY [typically 2 prizes, \$600 total] is a *really good idea*. A ten-page essay is fine. Date for the emailed-PDF is **Monday, 25Mar.2024**.

Circle: Yes True Résumé material!

a VS $V := \text{MAT}_{4 \times 4}(\mathbb{R})$ is a 16-dim'l \mathbb{R} -VS. Define linear-trn $D: V \rightarrow V$ by $D(M) := M + M^t$. Then Nullity(D) = And Rank(D) =

The trn $U: V \rightarrow V$ by $U(M) := M^2$ is: Circle best
Linear Affine (but not linear) Not-affine

b Shear the plane *vertically*, sending \mathbf{e}_1 to $\mathbf{e}_1 + 3\mathbf{e}_2$, followed by the *horizontal* shear which sends \mathbf{e}_2 to $-2\mathbf{e}_1 + \mathbf{e}_2$. Let S be the 2×2 matrix whose lefthand action is the preceding composition of shears.

Then $S = \begin{bmatrix} \text{---} & \text{---} \\ \text{---} & \text{---} \end{bmatrix}$.

c Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) := \begin{bmatrix} 3x - y \\ 2x + 6y \end{bmatrix}$. W.r.t ordered basis $\mathcal{B} := \left(\begin{bmatrix} 5 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \end{bmatrix}\right)$, let $M := \llbracket T \rrbracket_{\mathcal{B}}^{\mathcal{B}}$. Then $M = RTR^{-1}$,

where $R = \begin{bmatrix} \text{---} & \text{---} \\ \text{---} & \text{---} \end{bmatrix}$, $M = \begin{bmatrix} \text{---} & \text{---} \\ \text{---} & \text{---} \end{bmatrix}$.

d In each blank below, write either "there exist" or "for all", Circle one of the underlined scalar-pairs, and Circle a phrase.

Assertion $\text{Spn}(\mathbf{v}, \mathbf{w}) \supset \text{Spn}(\mathbf{x}, \mathbf{y})$ means:

" scalars $\underline{a}, \underline{b} \mid \underline{c}, \underline{d}$ (st. | we have that | and)
..... scalars $\underline{a}, \underline{b} \mid \underline{c}, \underline{d}$ (st. | we have that)
..... $\underline{a}\mathbf{v} + \underline{b}\mathbf{w} = \underline{c}\mathbf{x} + \underline{d}\mathbf{y}$."

R2: OYOP: Essay: *Write on every second line, so that I can easily write between the lines.*

i Consider a lin-trn $T: \mathbf{X} \rightarrow \mathbf{U}$ between finite-dimensional VSes. Distinguishing between zero-vectors $\vec{0}_{\mathbf{X}}$ and $\vec{0}_{\mathbf{U}}$, give, using set-builder notation: A **formal definition** of Range(T). And: A **formal defn** of $\text{Nul}(T)$.

ii State the Rank+Nullity theorem for $T: \mathbf{X} \rightarrow \mathbf{U}$, first defining terms **Rank**(T) and **Nullity**(T).

iii Give a careful proof of the Rank+Nullity thm for $T: \mathbf{X} \rightarrow \mathbf{U}$. Also: Use good, large *pictures* to illustrate the ideas in the proof.

End of Class-R

R1: _____ 125pts
R2: _____ 95pts

Total: _____ 220pts

NAME: _____

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: _____