

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a **natnum**. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”.

[Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Use $\bar{\mathbb{R}} = [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$, the **extended reals**.

An “**interval of integers**” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$ is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$.

Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). trnfn: ‘transformation’. cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g., “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’ as in “a fixed-pt of a map”.

Binop: ‘Binary operator’. Binrel: ‘Binary relation’.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** function, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**.

For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘Polynomial-times-exponential’, e.g., $[3 + t^2] \cdot e^{4t}$. PolyExp-sum: ‘Sum of polyexps’. E.g., $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Phrases. WLOG: ‘Without loss of generality’. IFF: ‘if and only if’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. And $\mathbb{X} =$ “Contradiction”.

IST: ‘It Suffices To’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. inter alia: ‘among other things’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Sequence notation. A **sequence** \vec{x} abbreviates $(x_0, x_1, x_2, x_3, \dots)$. For a set Ω , expression “ $\vec{x} \subset \Omega$ ” means $[\forall n: x_n \in \Omega]$. Use **Tail_N(\vec{x})** for the subsequence

$$(x_N, x_{N+1}, x_{N+2}, \dots)$$

of \vec{x} . Given a fnc $f: \Omega \rightarrow \Lambda$ and an Ω -sequence \vec{x} , let $f(\vec{x})$ be the Λ -sequence $(f(x_1), f(x_2), f(x_3), \dots)$.

Suppose Ω has an addition and multiplication. For Ω -seqs \vec{x} and \vec{y} , then, let $\vec{x} + \vec{y}$ be the sequence whose n^{th} member is $x_n + y_n$. I.e

$$\vec{x} + \vec{y} = [n \mapsto [x_n + y_n]].$$

Similarly, $\vec{x} \cdot \vec{y}$ denotes seq $[n \mapsto [x_n \cdot y_n]]$.

Plex notation. Let **SCC** mean “positively oriented simple-closed-contour”. For a **SCC** C , have \mathring{C} be the (open) region C encloses, and let \widehat{C} mean C together with \mathring{C} . So \widehat{C} is $C \sqcup \mathring{C}$; it is automatically simply-connected and is a closed bounded set.

Plex [2023g] quizzes so far...

P2: Mon. 23 Jan Set $w := [2 + i]^2$. So $|w| = \boxed{\dots}$.

P1: Fri. 20 Jan Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} = \boxed{\dots} + i \cdot \boxed{\dots}$. Also, $\text{Im}(e^w) = \sin(A) \cdot e^B$, for real numbers $A = \boxed{\dots}$ and $B = \boxed{\dots}$.

Thus $\text{Im}\left(\frac{5-i}{2+3i}\right) = \boxed{\dots}$.

By the way, $|5 - 3i| = \boxed{\dots}$.

P3: Wed.
25 Jan Number $6 \cdot \exp\left(\mathbf{i} \cdot \frac{5\pi}{3}\right)$ equals $x + y\mathbf{i}$ for real numbers

$$x = \text{.....} \quad \text{and} \quad y = \text{.....}.$$

P4: Mon.
30 Jan Number $[\mathbf{i} + \sqrt{3}]^{70} = x + \mathbf{i}y$, for real numbers

$$x = \text{.....} \quad \text{and} \quad y = \text{.....}.$$

[Multiplying complexes multiplies their moduli (absolute-values), and adds their angles.]

P5: Fri.
03 Feb On a set Ω , a *metric* is a map $d: \Omega \rightarrow [0, \infty)$ such that $\forall w, x, y, z \in \Omega$:

MS1:

MS2:

MS3:

P8: Fri.
24 Feb The coeff of $x^7 y^{12}$

in $[5x + y^3 + 1]^{30}$ is

[Write your answer as a product of powers and a multinomial. Optionally, you can expand the multinomial as a product of binomials.]

Class-A. Wed.
15 Feb

In-class closed-book Open-Brain exam.

Please bring lined-paper for computation. You may also want to bring colored pens/pencils for diagrams.

P6: Mon.
20 Feb Multinomial coefficient $\binom{9}{4, 2, 3} = \text{_____}$

[Write your answer as a product of binomial coeffs, then compute the product as a single integer,]

P7: Wed.
22 Feb *Am I in class today?*

circle one "Yes!" "Of course!"

"I wouldn't miss it for the world!"

Bonus-A: Mon.
27 Feb In $[5x^2 + 4y + z^3 + 7]^{20}$, compute these coeffs:

$$\text{Coeff}(x^6 z^8) = \dots$$

$$\text{Coeff}(y^5 z^6) = \dots$$

[An integer, or a product of powers and multinomial-coeffs.]

Map $\gamma: [0, 1] \rightarrow \mathbb{C}$ is the constant speed parametrization of the line-segment

from 3 to i. So $\gamma(t) = \dots$

Thus $J := \int_{\gamma} z \, dz$ equals \dots

Class-B. Wed.
08Mar2023

In-class closed-book Open-Brain exam.

Please bring lined-paper for computation. You may also want to bring colored pens/pencils for diagrams.

Bonus-B: Fri.
10 Mar Coeff of x^5y^{18} in $[x + 1 + 3y]^{30}$ is

[You may leave your answer as a product of *posints*, or you may multiply-out.]

Define $f(x+iy) := xy + iy$. Let L be the line-segment from $P := 2i$ to

$Q := 1$. Then $\int_L f(z) dz =$

P9: Mon. 20 Mar. Recall: “The arclength-average on a circle, of a holomorphic function, is its value at the center.”

With $\mathbf{C} := \text{Sph}_2(3i)$ and $f(z) := z^2$,

integral $\oint_{\mathbf{C}} f(z) |dz| = \dots$. The due-date for this

year’s *Robert Long Essay Competition (RLEC)* is Thurs., 30 Mar., with a PDF emailed to Prof. K. True! Yes!

PA: Wed. 22 Mar. Numeric sequence $\vec{\mathbf{a}} = (a_0, a_1, a_2, \dots)$ is a *Cauchy sequence* if:

PB: Fri. 07 Apr. Carefully state *Rouche’s theorem*.

Bonus-C: Fri. 14 Apr. Let $f(z) := z^5 + 3z^4 + 6z$, and $\mathbf{C}_r := \text{Sph}_r(0)$. Our f

has \dots zeros enclosed by \mathbf{C}_1 , and \dots zeros in annulus $\mathbf{A} := \text{Ann}_2^1(0)$.

End of semester; looking forward to our Games Party!