

Abbrevs. WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Q1: Wed. 12 Sep Our invariant property for LBolt is that each row n satisfies:

LBolt gives $G := \text{Gcd}(221, 187) =$. And

$221S + 187T = G$, where $S =$ & $T =$ are integers.

Q2: Fri. 14 Sep Mod $K := 534$, the recipr. $\langle \frac{1}{37} \rangle_K =$ $\in [0..K]$.

So $x =$ $\in [0..K]$ solves $3 - 37x \equiv_K 7$.

Q3: Wed. 19 Sep Mod $N := 43$, the recipr. $\langle \frac{1}{30} \rangle_N =$ $\in [0..N]$.

So $y =$ $\in [0..N]$ solves $1 - 30y \equiv_N 8$.

Binomial-coeff $\binom{8}{5} =$. (Single numeral)

Q4: Fri. 21 Sep The number of ways of having 4 objects from 8 types is $\binom{4}{8} \stackrel{\text{Binom}}{=} \binom{\text{coeff}}{\text{numeral}}$.

And

$\llbracket 4 \rrbracket = \llbracket N \rrbracket$, where $N =$ $\neq 4$, and $T =$.

Q5: Mon. 24 Sep A polynomial $f: \mathbb{Z}_3 \rightarrow \mathbb{Z}_3$ of form $f(x) := \sum_{k=0}^3 C_k x^k$ satisfies $[\forall z \in \mathbb{Z}_3: f(z) \equiv z^2]$, yet $C_1 \not\equiv 0$. So $C_0 \equiv$, $C_1 \equiv$, $C_2 \equiv$, $C_3 \equiv$.

The physics lab has atomic zinc, tin, silver and gold. I’m allowed to take 6 atoms, so I have [expressed as single integer] many possibilities.

Q6: Mon. 01 Oct The number of permutations of “PREPPER”

is

.....

Prof. King believes that writing in complete, coherent sentences is crucial in communicating Mathematics, improves posture, and whitens teeth. one:

True! **Yes!** **wH’at S a?seTENcE**

Q7: Fri. 5 Oct There are $\binom{K}{J}$ many [diagonal] lattice-paths from point $(0, 2)$ to $(21, 7)$, where $K =$ and $J =$.

Such a path is **bad**, if it touches the x -axis. And $|\text{BAD}| = \binom{N}{L}$, where $N =$ and $L =$.

Q8: Mon. 26 Nov Perm $\alpha \in \mathbb{S}_7$ is $\langle 7425631 \rangle$. A particular permutation β satisfying $\beta^3 = \alpha$, is

$\beta = \langle 7$

And $\text{Sgn}(\beta)$ is (circle): $+1$ -1 .

Q9: Fri. 30 Nov Let \mathbb{D}_N be the set of derangements in \mathbb{S}_N . Then $|\mathbb{D}_4| =$.

The set of **good** k , st. \mathbb{D}_k has both odd perms and even perms, is

Quizzes for Spring 2013 start here: Immediately below are quizzes given in Combo2. Below that are potential problems. (Not all quiz problems come from the potential problems.)

Q10: Mon. 28 Jan Writing $1/[1 + 2x]^5$ as $\sum_{n=0}^{\infty} B_n \cdot x^n$, then $B_{100} = M \cdot \binom{U}{D}$ where $M =$, $U =$, $D =$.

Q11: Wed. 30 Jan Writing $1/[1 - x^4]^9$ as $\sum_{n=0}^{\infty} B_n \cdot x^n$, then $B_{100} = \binom{U}{D}$ where $U =$ and $D =$.

Q12: Wed. 13 Feb Coeff of x^{15} in $1/[1 + 2x^5]^3$ is .

b Bipartite graph $K_{3,2}$ is Eulerian. T F

Q13: Wed. 13 Feb **a** Graph G , a C_4 with a diagonal, has chromatic polynomial

$$\mathcal{P}_G(x) = \dots$$

b Our G has \dots acyclic orientations.

Q14: Fri. 22 Mar Let D be K_5 but with an edge (but no vertices) deleted. Then $\mathcal{P}_D(x)$ equals [written in chromatic-factored form]

Our D has \dots acyclic orientations.

Potential problems

GF1: Writing $1/[1-x^3]^8$ as $\sum_{n=0}^{\infty} B_n \cdot x^n$, then $B_{42} = \binom{U}{D}$ where $U = \dots$ and $D = \dots$

GF2: Suppose $G(x)$ is the OGF of seq. $\vec{b} = (b_0, b_1, \dots)$, where b_n is the number of partitions of n whose parts are primes < 6 . Then $G(x) = \dots$

N1: Recall that a “**partition** of a positive integer N ” is an ordered tuple (a_1, a_2, \dots, a_k) of *positive integers* such that $k \in \mathbb{Z}_+$ and $a_1 \geq a_2 \geq \dots \geq a_k$, and

$$a_1 + a_2 + \dots + a_k = N.$$

(Numbers a_1, \dots, a_k are called the **parts** of the partition.) The partitions of $N=3$ are: 3 , $2+1$, $1+1+1$.

i List the partitions of $N=5$: \dots

ii OYOP: *In grammatical English sentences, write your essay on every third line (usually), so that I can easily write between the lines.*

Recall that the *conjugate* of a partition is the partition you get by exchanging rows and columns in its Ferrers diagram. So the conjugate of partition $[5+3]$ is $[2+2+2+1+1]$.

A partition is ***self-conjugate*** if it equals its conjugate. Prove the following theorem from class (and from our text):

THEOREM. For each positive integer N : Let D_N be the number of partitions of N into distinct odd parts. Let S_N be the number of self-conjugate partitions of N . Then $D_N = S_N$.

N2: By Binomial Series thm, the coeff of x^6 in $\sqrt[5]{1+x^2}$ is $\frac{n}{d}$, where integers $n \perp d$. So $n = \dots$ and $d = \dots$ (Write each naturally as a product of integers).

N3a: The Bell-number recurrence relation we discussed in class is

$$\forall K \in \mathbb{N}: B(K+1) = \sum_{n=\ell}^K [\mu_n \cdot B(n)], \text{ where}$$

$$\ell = \dots \text{ and } \mu_n = \dots$$

[N.B: The μ_n numbers may depend on K .]

N3b: Define the “ n^{th} **Bell number**”. State the recurrence relation among the Bell numbers. Carefully prove this relation.

SNfk1: For natnums N, K , define $\mathbf{c}(N, K)$, the “**signless Stirling number** of the first kind”. Prove: THM: For posints $N \geq K$, recurrence

$$\mathbf{c}(N, K) = [N-1] \cdot \mathbf{c}(N-1, K) + \mathbf{c}(N-1, K-1)$$

holds.

SNfk2: Prove: THM: For each posint N , polynomial $\sum_{k=0}^N \mathbf{c}(N, k) \cdot x^k$ equals $x \cdot [x+1] \cdot [x+2] \cdot \dots \cdot [x+N-1]$.

TTT: The GoF, “Game of fifteen”, has two players. They alternate turns removing a number from the set $\{1, 2, \dots, 9\}$ and putting it in their own pile. When a player has, in his pile, three distinct numbers that sum to 15, he wins.

Prove that this game is isomorphic to tic-tac-toe.

Alg1: The Klein-4 group has \dots many group-automorphisms.

