

Generalized parentheses. Common:

() Parentheses. [] Brackets. ⟨ ⟩ Angle-brackets.
 { } Braces. | | Vertical bars (abs.value, cardinality).

Less common: ⌊ ⌋ Floor. ⌈ ⌉ Ceiling. ||| Norm-of.
 || Double-bracket. ⟨⟨ ⟩⟩ Double-angle-bracket.

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a **natnum**. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”.

[Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Use $\bar{\mathbb{R}} = [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$, the **extended reals**.

An “**interval of integers**” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$ is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$.

Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). trnfn: ‘transformation’. cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’.

RhS: ‘RightHand side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’ as in “a fixed-pt of a map”.

Binop: ‘Binary operator’. Binrel: ‘Binary relation’.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** function, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is $\exp()$.

For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘Polynomial-times-exponential’, e.g, $[3 + t^2] \cdot e^{4t}$. PolyExp-sum: ‘Sum of polyexps’. E.g, $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Phrases. WLOG: ‘Without loss of generality’. IFF: ‘if and only if’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. And \nexists = “Contradiction”.

IST: ‘It Suffices To’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. *inter alia*: ‘among other things’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Sequence notation. A *sequence* \vec{x} abbreviates $(x_0, x_1, x_2, x_3, \dots)$. For a set Ω , expression “ $\vec{x} \subset \Omega$ ” means $[\forall n: x_n \in \Omega]$. Use $\text{Tail}_N(\vec{x})$ for the subsequence

$$(x_N, x_{N+1}, x_{N+2}, \dots)$$

of \vec{x} . Given a fnc $f: \Omega \rightarrow \Lambda$ and an Ω -sequence \vec{x} , let $f(\vec{x})$ be the Λ -sequence $(f(x_1), f(x_2), f(x_3), \dots)$.

Suppose Ω has an addition and multiplication. For Ω -seqs \vec{x} and \vec{y} , then, let $\vec{x} + \vec{y}$ be the sequence whose n^{th} member is $x_n + y_n$. I.e

$$\vec{x} + \vec{y} = [n \mapsto [x_n + y_n]].$$

Similarly, $\vec{x} \cdot \vec{y}$ denotes seq $[n \mapsto [x_n \cdot y_n]]$.

SeLo quizzes during Add/Drop. These do not count for a grade.

DNC 1: Fri.
12 Jan Let $\tau()$ be the divisor-count function.

So $\tau(98,000) =$
.....

[Write your answer as the appropriate product of integers.]

The sum $\sum_{k=0}^{\infty} \left[\frac{-1}{3} \right]^k =$
.....

SeLo [2024t] quizzes

[An integer, or a product of powers and multinomial-coeffs.]

(The lowest MQ score is dropped. In consequence, there is no make-up for the first missed MQ.)

[Monday, 15Jan2024: MLK Day, No class]

P1: $\frac{\text{Wed.}}{17 \text{ Jan}} \left[\left[\sqrt{5} \right]^{\sqrt{2}} \right]^{\sqrt{8}} = \dots \cdot \log_8(4) = \dots$

The four solutions to $[y - 2] \cdot y \cdot [y + 2] = -1/y$

are $y =$

.....

[Hint: Apply the Quadratic Formula to y^2 .]

P5: Wed.
14 Feb $A := \{(6, 2), (2, 7), (5, 2), (7, 3), (7, 5), (3, 4), (1, 3), (1, 5)\}$ is a binrel on $[1..7]$, with transitive closure R . Then:

2R2 is T F. 4R6 is T F. 7R7 is T F.

P2: Mon.
22 Jan $\mathcal{P}(\mathcal{P}(\text{3-stooges}))$ has elements.

Given sets with cardinalities $|B| = 8$ & $|E| = 5$, the number of *non-constant* *fns* in B^E is

.....
[Write in form **Something — SomethingElse.**]

P6: Mon.
18 Mar Mimicking what we did in class: From the 987×200 game-board, cut-out (remove) the $(35, 150)$ -cell and one other cell at $P = (x, y)$. Circle those choices for P ,
 $(150, 160)$, $(14, 35)$, $(66, 77)$, $(195, 15)$, $(123, 4)$
 which, if removed, would leave a board that *definitely* **cannot** be domino-tiled.

[Note: Write your ans. ITOf factorials, then also write it as a single integer, or product of two, **without** factorials.]

P4: Wed.
07 Feb The coeff of x^7y^{12}

in $[5x + y^3 + 1]^{30}$ is

[Write your answer as a product of powers and a multinomial. Optionally, you can expand the multinomial as a product of binomials.]

BonusA: Mon.
12 Feb In $[5x^2 + 4y + z^3 + 7]^{20}$, compute these coefficients:

$$\text{Coeff}(x^6 z^8) =$$

Consequently, the $\text{Co}_{\text{eff}}(\gamma^5, \gamma^6)$ term is zero.