

Generalized parentheses. Common:

() *Parentheses*. [] *Brackets*. ⟨ ⟩ *Angle-brackets*.
 { } *Braces*. || *Vertical bars* (*abs.value, cardinality*).

Less common: ⌊ ⌋ *Floor*. ⌈ ⌉ *Ceiling*. ||| *Norm-of*.
 ||| *Double-bracket*. ⟨⟨ ⟩⟩ *Double-angle-bracket*.

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a *natnum*. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$.

\mathbb{N} = natural numbers = {0, 1, 2, …}.

\mathbb{Z} = integers = {…, -2, -1, 0, 1, …}. For the set {1, 2, 3, …} of positive integers, the *posints*, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the *negints*.

\mathbb{Q} = rational numbers = { $\frac{p}{q} \mid p \in \mathbb{Z}$ and $q \in \mathbb{Z}_+$ }. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The *posreals* \mathbb{R}_+ and the *negreals* \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the *complexes*.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”.

[Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Use $\mathbb{R} = [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$, the *extended reals*.

An “*interval of integers*” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$ is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$.

Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘*sequence*’. poly(s): ‘*polynomial(s)*’. irred: ‘*irreducible*’. Coeff: ‘*coefficient*’ and var(s): ‘*variable(s)*’ and parm(s): ‘*parameter(s)*’. Expr.: ‘*expression*’. Fnc: ‘*function*’ (so ratfnc: means rational function, a ratio of polynomials). trnfn: ‘*transformation*’. cty: ‘*continuity*’. cts: ‘*continuous*’. diff’able: ‘*differentiable*’. CoV: ‘*Change-of-Variable*’. Col: ‘*Constant of Integration*’. Lol: ‘*Limit(s) of Integration*’. RoC: ‘*Radius of Convergence*’.

Soln: ‘*Solution*’. Thm: ‘*Theorem*’. Prop’n: ‘*Proposition*’. CEX: ‘*Counterexample*’. eqn: ‘*equation*’.

RhS: ‘*RightHand side*’ of an eqn or inequality. LhS: ‘*lefthand side*’. Sqrt or Sqroot: ‘*square-root*’, e.g, “the sqroot of 16 is 4”. Ptn: ‘*partition*’, but pt: ‘*point*’ as in “a fixed-pt of a map”.

Binop: ‘*Binary operator*’. Binrel: ‘*Binary relation*’. FTC: ‘*Fund. Thm of Calculus*’. IVT: ‘*intermediate-Value Thm*’. MVT: ‘*Mean-Value Thm*’.

The **logarithm** function, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is $\exp()$.

For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘*Polynomial-times-exponential*’, e.g, $[3 + t^2] \cdot e^{4t}$. PolyExp-sum: ‘*Sum of polyexps*’. E.g, $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Phrases. WLOG: ‘*Without loss of generality*’. IFF: ‘*if and only if*’. TFAE: ‘*The following are equivalent*’. ITOf: ‘*In Terms Of*’. OTForm: ‘*of the form*’. FTSOC: ‘*For the sake of contradiction*’. And \nexists = “*Contradiction*”.

IST: ‘*It Suffices To*’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘*with respect to*’ and s.t: ‘*such that*’.

Latin: e.g: *exempli gratia*, ‘*for example*’. i.e: *id est*, ‘*that is*’. N.B: *Nota bene*, ‘*Note well*’. inter alia: ‘*among other things*’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Sequence notation. A *sequence* \vec{x} abbreviates $(x_0, x_1, x_2, x_3, \dots)$. For a set Ω , expression “ $\vec{x} \subset \Omega$ ” means $[\forall n: x_n \in \Omega]$. Use $\text{Tail}_N(\vec{x})$ for the subsequence

$$(x_N, x_{N+1}, x_{N+2}, \dots)$$

of \vec{x} . Given a fnc $f: \Omega \rightarrow \Lambda$ and an Ω -sequence \vec{x} , let $f(\vec{x})$ be the Λ -sequence $(f(x_1), f(x_2), f(x_3), \dots)$.

Suppose Ω has an addition and multiplication. For Ω -seqs \vec{x} and \vec{y} , then, let $\vec{x} + \vec{y}$ be the sequence whose n^{th} member is $x_n + y_n$. I.e

$$\vec{x} + \vec{y} = [n \mapsto [x_n + y_n]].$$

Similarly, $\vec{x} \cdot \vec{y}$ denotes seq $[n \mapsto [x_n \cdot y_n]]$.

SeLo [2023t] quizzes

(The lowest MQ score is dropped. In consequence, there is no make-up for the first missed MQ.)

[Monday, 04Sep2023: Labor Day, *No class*]

P1: Wed. 06 Sep Write $N := 36300$ as a PoPP [Product of Prime Powers],

$N \stackrel{\text{PoPP}}{=} \dots \dots \dots$ Hence the number of (positive) divisors of N is $\tau(N) = \dots \dots \dots$

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is an *involution* IFF

[Don't forget the appropriate \forall or \exists quantification.]

P2: Fri. 08 Sep [With $\mathcal{P}()$ the *powerset* operator, let $S := 3\text{-stooges}$.] Then $|\mathcal{P}(S)| = \dots \dots \dots$ and $|\mathcal{P}(\mathcal{P}(S))| = \dots \dots \dots$

Math-Greek alphabet: Please write the two missing data of lowercase/uppercase/name. Eg:

“iota: $\alpha:$ $\beta:$ $\gamma:$ ” You fill in: ι Λ *alpha* β *beta*

$\Omega:$ $\Omega:$ $\Upsilon:$ $\Upsilon:$ $\Pi:$ $\Pi:$

$\sigma:$ $\sigma:$ $\gamma:$ $\gamma:$ $\xi:$ $\xi:$

lambda λ rho ρ delta δ mu μ

P3: Mon. 11 Sep Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} = \dots \dots \dots + i \cdot \left[\dots \dots \dots \right]$.

Thus $\operatorname{Im}\left(\frac{5-i}{2+3i}\right) = \dots \dots \dots$.

By the way, $|5-3i| = \dots \dots \dots$

P4: Wed. 13 Sep Write the free vars in each of these expressions.

$$\exists n \in \mathbb{N}: f(n) \subset \bigcup_{\ell=p-4}^{p+7} \underbrace{\{x \in \mathbb{Z} \mid \ell \cdot n \equiv_5 x^2\}}_{\substack{E1 \\ E2}}$$

$E3: \dots \dots \dots$ $E2: \dots \dots \dots$ $E1: \dots \dots \dots$

P5: Fri.
15 Sep The number of permutations of “PREPPER”, as a multinomial coefficient, is

$$\frac{\text{numeral}}{\text{numeral}}.$$

P8: Fri.
22 Sep LBolt gives $G := \text{GCD}(413, 294) = \frac{\text{numeral}}{\text{numeral}}$. And $413S + 294T = G$, where $S = \frac{\text{numeral}}{\text{numeral}}$ & $T = \frac{\text{numeral}}{\text{numeral}}$ are integers.

P6: Mon.
18 Sep

The number of ways of picking 4 objects from 8 types is

$$\frac{\text{Binom}}{\text{coeff}} \left(\frac{\text{numeral}}{\text{numeral}} \right) \frac{\text{Integer}}{\text{numeral}}.$$

And

$$\frac{[8]}{[4]} = \frac{[T]}{[K]}, \text{ where } T = \frac{\text{numeral}}{\text{numeral}} \neq 8, \text{ and } K = \frac{\text{numeral}}{\text{numeral}} \neq 4, 1.$$

Continued on next page...

P7: Fri.
22 Sep Write the truth-table for $B \Rightarrow [\neg B \Rightarrow C]$.

B	C	$\neg B$	$[\neg B] \Rightarrow C$	$B \Rightarrow [\neg B \Rightarrow C]$
F	F			
F	T			
T	F			
T	T			

Monday, 25Sep. is YOM KIPPUR, no MQ; if you miss class, get notes from several colleagues. Mr. Aaron Thrasher will teach.

Wednesday, 27Sep.: HOME A due, BOC!, wATMP!
The write-up is *carefully stapled*, pages numbered from 1 to N , with page 1 being the Problem Sheet that you printed out,

Friday, 29Sep. is CLASS A, the part of exam-A that students take individually. (Your score is the sum of HOME A with your CLASS A). This is a closed-book, open-brain exam. It is helpful to bring both lined and unlined paper. Bring several writing implements. Make sure they write **Dark**.

No faint pencil !

P9: Wed.
27 Sep Compute the real $\alpha = \lfloor \dots \dots \dots \rfloor$ such that

$$* \quad 3^\alpha \cdot \sum_{k=0}^{4000} \binom{4000}{k} 2^k = \sum_{j=0}^{1995} \binom{1995}{j} 8^j.$$

[Hint: The Binomial Theorem]

PA: Wed.
11 Oct For $K \in [5.. \infty)$, a closed

formula for $\sum_{n=3}^K \frac{1}{n \cdot [n+2]}$ is $\lfloor \dots \dots \dots \rfloor$.

[Hint: What an *Astronomical* problem!]

PB: Fri.
13 Oct For $K \in [10.. \infty)$, a closed

formula for $\sum_{n=4}^K \frac{1}{n \cdot [n+2]}$ is $\lfloor \dots \dots \dots \rfloor$.

[Hint: What an *Astronomical* problem!]

PC: Wed.
20 Oct Both \sim and \bowtie are equiv-relations on a set Ω .
Define binrels **I** and **U** on Ω as follows.

Define $\omega \mathbf{U} \lambda$ IFF Either $\omega \sim \lambda$ or $\omega \bowtie \lambda$ [or both].
Define $\omega \mathbf{I} \lambda$ IFF Both $\omega \sim \lambda$ and $\omega \bowtie \lambda$.

So “**U** is an equiv-relation” is:

T F

So “**I** is an equiv-relation” is:

T F

Wednesday, 25Oct2023 is CLASS B, the part of exam-B that students take individually. This is a closed-book, open-brain exam. It is helpful to bring both lined and unlined paper. Bring several writing implements. Make sure they write **Dark**.

No faint pencil!

Mon.
23 Oct **Home-B due, BoC, wATMP**

PD: Fri.
27 Oct On a 4-set, there are $\lfloor \dots \dots \dots \rfloor$ many equivalence relations.

PE: Mon.
20 Nov The number of students in class today (including me) is $\lfloor \dots \dots \dots \rfloor$.

PF: Mon.
27 Nov Map $f(k, n) := 2^k \cdot [1 + 2n]$ is a bijection from $\mathbb{N} \times \mathbb{N} \leftrightarrow \mathbb{Z}_+$. And $f^{-1}(176) = (\lfloor \dots \dots \rfloor, \lfloor \dots \dots \rfloor)$.

PH Ungiven: Let $\mathbb{S}_{\mathbb{N}}$ be the set of *permutations of \mathbb{N}* .
Circle those of following sets which are equinumerous with $\mathbb{N}^{\mathbb{N}}$:

\mathbb{N} \mathbb{R} $\mathbb{N} \times \mathbb{R}$ $2^{\mathbb{R}}$ $\mathbb{R}^{\mathbb{N}}$ $\mathbb{R}^{\mathbb{R}}$ $\mathbb{S}_{\mathbb{N}}$

[Schröder-Bernstein is useful for some of these.]

Games Party: Wed. 06 Dec *Bring games and look photogenic, for our traditional Games Party, from 10:40 am to 4:40 pm, at Pascal's Cafe.*