

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a **natnum**. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”. [Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Use $\bar{\mathbb{R}} = [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$, the **extended reals**.

An “*interval of integers*” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$ is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). trnfn: ‘transformation’. cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’ as in “a fixed-pt of a map”.

Binop: ‘Binary operator’. Binrel: ‘Binary relation’.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** function, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**.

For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘Polynomial-times-exponential’, e.g, $[3 + t^2] \cdot e^{4t}$. **PolyExp-sum:** ‘Sum of polyexps’. E.g, $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Phrases. WLOG: ‘Without loss of generality’. IFF: ‘if and only if’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. And \nexists = “Contradiction”.

IST: ‘It Suffices To’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. inter alia: ‘among other things’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Sequence notation. A *sequence* \vec{x} abbreviates $(x_0, x_1, x_2, x_3, \dots)$. For a set Ω , expression “ $\vec{x} \subset \Omega$ ” means $\forall n: x_n \in \Omega$. Use **Tail_N(\vec{x})** for the subsequence

$$(x_N, x_{N+1}, x_{N+2}, \dots)$$

of \vec{x} . Given a fnc $f: \Omega \rightarrow \Lambda$ and an Ω -sequence \vec{x} , let $f(\vec{x})$ be the Λ -sequence $(f(x_1), f(x_2), f(x_3), \dots)$.

Suppose Ω has an addition and multiplication. For Ω -seqs \vec{x} and \vec{y} , then, let $\vec{x} + \vec{y}$ be the sequence whose n^{th} member is $x_n + y_n$. I.e

$$\vec{x} + \vec{y} = [n \mapsto [x_n + y_n]].$$

Similarly, $\vec{x} \cdot \vec{y}$ denotes seq $[n \mapsto [x_n \cdot y_n]]$.

Plex notation. Let **SCC** mean “positively oriented simple-closed-contour”. For a SCC C , have \mathring{C} be the (open) region C encloses, and let \widehat{C} mean C together with \mathring{C} . So \widehat{C} is $C \sqcup \mathring{C}$; it is automatically simply-connected and is a closed bounded set.

Plex quizzes during Add/Drop. These do not count for a grade.

DNC 1: Fri.
12 Jan Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} = \boxed{\dots} + i \cdot \boxed{\dots}$.

Thus $\frac{5-i}{2+3i} = \boxed{\dots} + i \cdot \boxed{\dots}$.

By the way, $|5-3i| = \boxed{\dots}$.

Plex [2024g] quizzes so far...

(The lowest MQ score is dropped. In consequence, there is no make-up for the first missed MQ.)

[Monday, 15Jan2024: MLK Day, No class]

Q1: Wed. 17 Jan Reals $x = \boxed{\dots}$ and $y = \boxed{\dots}$

where $x + iy = [1 + i]^{86}$. [Hint: Multiplying complexes multiplies their moduli, and adds their angles.]

Q2: Fri. 19 Jan Number $[i + \sqrt{3}]^{70} = x + iy$, for real numbers

$x = \boxed{\dots}$ and $y = \boxed{\dots}$

[Multiplying complexes multiplies their moduli (absolute-values), and adds their angles.]

Q3: Mon. 22 Jan With $v := \exp(-2 + 5i)$, then $|v| = \boxed{\dots}$.

This $|v|$ lies in

$[0, \frac{1}{2}), [\frac{1}{2}, 1), [1, 2), [2, 4), [4, 8), [8, \infty)$.

Q4: Wed. 24 Jan Number $6 \cdot \exp(i \cdot \frac{5\pi}{3})$ equals $x + yi$ for reals

$x = \boxed{\dots}$ and $y = \boxed{\dots}$

Q5: Fri. 26 Jan The empty-set is path-connected:

T F

Punctured ball $\text{PBal}_2(3i)$ is path-connected:

T F

$\text{Sph}_2(5i) \cap \text{Sph}_2(i)$ is path-connected:

T F

$\text{Sph}_2(4i) \cup \text{Sph}_2(-i)$ is path-connected:

T F

$\text{Sph}_2(5i) \cup \text{CldBal}_2(i)$ is closed:

T F

Q6: Fri. 09 Feb Cross-ratio $[z, 2+i, 4i, 3] = \frac{az + b}{cz + d}$, where

$a = \boxed{\dots}$, $b = \boxed{\dots}$,

$c = \boxed{\dots}$, $d = \boxed{\dots}$.

Q7: Wed. 08 Mar Let $f(z) := e^{4z}/\sin(3z)$.

For $n \in \mathbb{Z}$, then, $\text{Res}(f, n\pi) = \boxed{\dots}$.

And $\text{Res}(f, \frac{\pi}{2}) = \boxed{\dots}$.

Q8: Mon. 18 Mar Complex Analysis is Fun! Circle: Yes True

PS $\cos(z) = \boxed{\dots}$ + ...

With $f(z) := z/[\cos(z) - 1]$, let $R_k := \text{Res}(f, 2\pi k)$.

Then $R_0 = \boxed{\dots}$ and $R_3 = \boxed{\dots}$.

[Hint: Periodicity $\cos(z + 2\pi k) = \cos(z)$.]

Bonus-T: Wed. 03 Apr Let $f(z) := \frac{z^3}{z^2 - 9}$.

Then $\text{Res}(f, 3) = \boxed{\dots}$.