

Generalized parentheses. Common:

() Parentheses. [] Brackets. ⟨ ⟩ Angle-brackets.
 { } Braces. || Vertical bars (abs.value, cardinality).

Less common: ⌊ ⌋ Floor. ⌈ ⌉ Ceiling. ||| Norm-of.
 [] Double-bracket. ⟨ ⟩ Double-angle-bracket.

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a **natnum**. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”. [Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Use $\mathbb{R} = [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$, the **extended reals**.

An “**interval of integers**” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$ is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). trnfn: ‘transformation’. cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’.

RhS: ‘RightHand side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’ as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** function, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**.

For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘Polynomial-times-exponential’, e.g, $[3 + t^2] \cdot e^{4t}$. PolyExp-sum: ‘Sum of polyexps’. E.g, $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Phrases. WLOG: ‘Without loss of generality’. IFF: ‘if and only if’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. And $\mathbb{X} =$ “Contradiction”.

IST: ‘It Suffices To’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. inter alia: ‘among other things’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Sequence notation. A *sequence* \vec{x} abbreviates $(x_0, x_1, x_2, x_3, \dots)$. For a set Ω , expression “ $\vec{x} \subset \Omega$ ” means $[\forall n: x_n \in \Omega]$. Use **Tail_N(\vec{x})** for the subsequence

$$(x_N, x_{N+1}, x_{N+2}, \dots)$$

of \vec{x} . Given a fnc $f: \Omega \rightarrow \Lambda$ and an Ω -sequence \vec{x} , let $f(\vec{x})$ be the Λ -sequence $(f(x_1), f(x_2), f(x_3), \dots)$.

Suppose Ω has an addition and multiplication. For Ω -seqs \vec{x} and \vec{y} , then, let $\vec{x} + \vec{y}$ be the sequence whose n^{th} member is $x_n + y_n$. I.e

$$\vec{x} + \vec{y} = [n \mapsto [x_n + y_n]].$$

Similarly, $\vec{x} \cdot \vec{y}$ denotes seq $[n \mapsto [x_n \cdot y_n]]$.

LinA [2023t] quizzes

These count!

(Recall, the lowest MQ score is dropped. In consequence, there is no make-up for the first missed MQ.)

Q1: Tue. 05 Sep Line $y = Mx + B$ is orthogonal to $y = \frac{1}{5}x + 2$ and owns $(4, 10)$. So $M = \boxed{-5}$ and $B = \boxed{30}$.

Soln. Line $y = \frac{1}{5}x + 2$ has slope $\frac{1}{5}$. Its negative reciprocal, value -5 , is thus the slope of the orthogonal line.

Consequently, $-5x + B = y$ is the form of the orthogonal line; this, for an unknown B .

Plugging in $(4, 10)$ for (x, y) shows that $B = 30$. \blacklozenge

Values $x = \boxed{\dots}$, $y = \boxed{\dots}$, where $\begin{bmatrix} x \\ y \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} - 3 \begin{bmatrix} 5 \\ -1 \end{bmatrix}$.

Soln. Computing, $x = 2 \cdot 2 + [-3] \cdot 5 \stackrel{\text{note}}{=} -11$.

Similarly, $y = 9$. \blacklozenge

Q2: Wed. 06 Sep Matrix-product $\begin{bmatrix} 2 & -3 \\ 4 & 5 \end{bmatrix} \cdot \begin{bmatrix} 7 & w \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 2w - 3 \\ 38 & 4w + 5 \end{bmatrix}$.

The *trace* of $\begin{bmatrix} -3/2 & -5/2 \\ 7/2 & 9/2 \end{bmatrix}$ equals $\boxed{\dots}$.

Soln. The trace of a non-square matrix is *DNE*, *Does Not Exist*. For M a $N \times N$ matrix, $\text{Trace}(M) = \text{Tr}(M)$ is the sum of the elements on the main diagonal.

Above, the trace equals $\frac{-3}{2} + \frac{9}{2} \stackrel{\text{note}}{=} 3$. \blacklozenge

Q3: Mon. 11 Sep Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} = \boxed{\dots} + i \cdot \boxed{\dots}$.

Thus $\text{Im}\left(\frac{5-i}{2+3i}\right) = \boxed{\dots}$.

By the way, $|5-3i| = \boxed{\dots}$.

Soln: C-arithmetic. With $d := 2 + 3i$, note

$$\frac{1}{d} = \frac{1}{d} \cdot \frac{\bar{d}}{\bar{d}} = \bar{d}/|d|^2.$$

Since $|d|^2 = 2^2 + 3^2 = 13$, we have $\frac{1}{d} = \frac{\bar{d}}{13} = \frac{2}{13} + \frac{-3}{13}i$.

Writing $\frac{1}{d} = B + Ci$ with B, C real, then,

$$B = \frac{2}{13} \quad \text{and} \quad C = \frac{-3}{13}.$$

Letting $n := 5 - i$, the above shows that

$$\frac{n}{d} = \frac{n \cdot \bar{d}}{|d|^2} = \frac{n \cdot \bar{d}}{13}.$$

Hence

$$\text{Im}\left(\frac{n}{d}\right) = \text{Im}(n \cdot \bar{d})/13,$$

since $13 \in \mathbb{R}$. Finally,

$$\begin{aligned} \text{Im}(n \cdot \bar{d}) &= \text{Re}(n) \cdot \text{Im}(\bar{d}) + \text{Im}(n) \cdot \text{Re}(\bar{d}) \\ &= 5 \cdot [-3] + [-1] \cdot 2 = -17. \end{aligned}$$

Thus

$$\text{Im}\left(\frac{n}{d}\right) = \frac{-17}{13}.$$

Lastly, $|5-3i|^2 = 5^2 + 3^2 = 34$. Consequently, $|5-3i| = \sqrt{34}$.

Q4: Tue.
12 Sep !May lightning $\not\downarrow$ strike this table! (I.e, please fill in.)

n	r_n	q_n	s_n	t_n
0	81	—	1	0
1	66		0	1
2				
3				
4				
5				

So $\text{GCD}(81, 66) = \left[\dots \right] = \left[\dots \right] \cdot 81 + \left[\dots \right] \cdot 66$.

Bolt Soln:

```
% (use-ring Integer-ring)
```

```
% (lightning 81 66)
```

```
n:  r_n   q_n   s_n   t_n
/-----\
0:  81   --    1    0
1:  66   1     0    1
2:  15   4     1   -1
3:  6    2    -4    5
4:  3    2     9  -11
5:  0  Infny  -22   27
\-----/
```

Rename r4,s4,t4 to GCD,S,T.

Note $\text{GCD} = r0 * S + r1 * T$, i.e
 $3 = 81 * 9 + 66 * [-11]$.

Q5: Wed.
13 Sep Over field \mathbb{Z}_{53} , consider matrix $\mathbf{M} := \begin{bmatrix} 21 & 3 \\ 4 & 5 \end{bmatrix}$.

Its determinant is $\text{Det}(M) =$ [0..53], with

mod-53 reciprocal $\frac{1}{\text{Det}(\mathbf{M})} =$ $\in [0..53)$.

2×2 matrix determinant.

```
 :: (set-ring-modulus (setq Prime 53))
 :: (use-ring Mod-M-ring)
 :: (setq M (mat-make-square 21 3 4 5))
   [ 21 3 ]
   [ 4 5 ]
```

$$\text{So } \text{Det}(\mathbf{M}) = 21.5 - 3.4 = 93 \equiv_{53} 40.$$

As $40 \perp 53$ (“40 is *coprime* to 53”) value 40 has a mod-53 reciprocal, which we can compute via LBOLT. Recall the **row property** $\forall n: r_n = [s_n \cdot 53] + [t_n \cdot 40]$ of LBOLT. Taking this mod-53 gives

$$\forall n: r_n \equiv_{53} t_n \cdot 40.$$

Consequently, we *do not need to compute the s -column*,
Nonetheless we will, so to have the verification-row.

```
:: (setq D (mat-det M))  => 40
:: (with-ring Integer-ring (lightning Prime D))
```

n:	r_n	q_n	s_n	t_n
0:	53	--	1	0
1:	40	1	0	1
2:	13	3	1	-1
3:	1	13	-3	4
4:	0	Infty	40	-53

Rename r3,s3,t3 to GCD,S,T.

$$\text{Note} \quad \text{GCD} = r_0 * S + r_1 * T, \text{ i.e.} \\ 1 = [53]*[-3] + [40]*[4].$$

THE UPSHOT: The mod-53 reciprocal of 40 is 4.

I.e, $\langle 1/40 \rangle_{53} = 4$.

Computing M^{-1} for fun. Let's "go the extra mile" and obtain the multiplicative inverse of M .

Below, let \equiv mean \equiv_{53} . As $\text{Det}(M) \neq 0$, we have that

$$\mathbf{M}^{-1} \equiv \frac{1}{\text{Det}(\mathbf{M})} \begin{bmatrix} 5 & -3 \\ -4 & 21 \end{bmatrix} \equiv 4 \cdot \begin{bmatrix} 5 & -3 \\ -4 & 21 \end{bmatrix} \equiv \begin{bmatrix} 20 & -12 \\ -16 & 84 \end{bmatrix} \equiv \begin{bmatrix} 20 & 41 \\ 37 & 31 \end{bmatrix}.$$

We can check correctness by multiplying M by M^{-1} in both orders:

```
:: (setq invM (mat-inverse? M))  
     [ 20  41 ]  
     [ 37  31 ]
```

```
:: (mat-mul invM M)
```

:: (mat-mul M invM)
[1 0]
[0 1]

Looks good... To see one computation before reducing mod-53:

```
:: (with-ring Integer-ring (mat-mul invM M))  
  [ 584 265 ]  
  [ 901 266 ]
```

This latter is mod-53 congruent to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Could you solve an analogous problem over \mathbb{C} , the complex field?

Q6: Fri. 15 Sep Over \mathbb{C} , let $M := \begin{bmatrix} 1+3i & 7i \\ i & 2i \end{bmatrix}$. In standard form, $\text{Det}(M) = \boxed{\dots}$. Its reciprocal is

$\frac{1}{\text{Det}(M)} = x + iy$, for reals $x = \boxed{\dots}$ and $y = \boxed{\dots}$.

The $(1, 1)$ -entry of M^{-1} is $\boxed{\dots} + [\dots]i$.

2x2 matrix determinant.

```
:: (use-ring GaussRational-ring)
:: (setq M (mat-make-square
  '( #C(1 3) #C(0 7) #C(0 1) #C(0 2) )))
[ 1+3i  7i ]
[      i  2i ]
```

$$\text{So } D := \text{Det}(M) = [(1+3i) \cdot 2i] - [7i \cdot i] = 1 + 2i.$$

```
:: (setq D (mat-det M)) => 1+2i
```

$$\text{Thus, } 1/D = \bar{D}/|D|^2 = \frac{1 - 2i}{5}.$$

Hence $x = 1/5$ and $y = -2/5$.

Examining M^{-1} . Note

$$M^{-1} = \frac{1}{\text{Det}(M)} \begin{bmatrix} 2i & -7i \\ -i & 1+3i \end{bmatrix} = \left[\frac{1}{5} - \frac{2}{5}i \right] \begin{bmatrix} 2i & -7i \\ -i & 1+3i \end{bmatrix}.$$

Hence the $(1, 1)$ -entry of M^{-1} is $\frac{4}{5} + \frac{2}{5}i$. ◆

Computing M^{-1} for fun. Multiplying out:

```
:: (setq invM (mat-inverse? M))
```

$$\begin{bmatrix} [4/5]+[2/5]i & [-14/5]-[7/5]i \\ [-2/5]-[1/5]i & [7/5]+[1/5]i \end{bmatrix}$$

A nicer way to write this is

$$M^{-1} = \frac{1}{5} \cdot \begin{bmatrix} 4+2i & -14-7i \\ -2-i & 7+i \end{bmatrix}.$$

Could you solve an analogous problem over \mathbb{Z}_{13} ?

Q7: Mon. 18 Sep Here, let AT mean “Always True”, AF mean “Always False” and Nei mean “Neither always true nor always false”. Below, $\mathbf{v}, \mathbf{w}, \mathbf{x}$ repr. *distinct, non-zero* vectors in \mathbb{R}^4 , a \mathbb{R} -VS. Please circle the correct response:

y1 If $\mathbf{x} \notin \text{Span}\{\mathbf{v}, \mathbf{w}\}$ then $\{\mathbf{v}, \mathbf{w}, \mathbf{x}\}$ is linearly independent. AT AF Nei

y1. CEX: Let $\mathbf{v} := \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{w} := 2\mathbf{v}$, and $\mathbf{x} := \begin{bmatrix} 7 \\ 0 \end{bmatrix}$. ◆

y2 Collection $\{\mathbf{0}, \mathbf{x}\}$ is linearly-independent. AT AF Nei

y2. Sum $1 \cdot \mathbf{0} + 0 \cdot \mathbf{x} = \mathbf{0}$, yet 1 is not zero in \mathbb{R} . ◆

y3 $\text{Span}\{\mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{v} + 2\mathbf{w} + 3\mathbf{x}\}$ is all of \mathbb{R}^4 . AT AF Nei

y3. The given span equals $\mathcal{S} := \text{Span}\{\mathbf{v}, \mathbf{w}, \mathbf{x}\}$, since $\mathbf{v} + 2\mathbf{w} + 3\mathbf{x} \in \mathcal{S}$. But \mathcal{S} is at most 3-dimensional. ◆

y4 If none of $\mathbf{v}, \mathbf{w}, \mathbf{x}$ is a multiple of the other vectors, then $\{\mathbf{v}, \mathbf{w}, \mathbf{x}\}$ is linearly independent. AT AF Nei

y4. CEX: Let $\mathbf{v} := \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{w} := \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{x} := \mathbf{v} + \mathbf{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. ◆

y5 For 2x2 matrices: $\text{Det}(B + A) = \text{Det}(B) + \text{Det}(A)$. AT AF Nei

y5. CEX: Matrices $B := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $A := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ each have determinant zero, yet $B + A$ is the identity-matrix, which has $\text{Det} = 1$.

OTOH, $\text{Det}(B + B)$ does equal $\text{Det}(B) + \text{Det}(B)$. ◆

Q8: Tue.
19 Sep Matrix-product $\begin{bmatrix} b \\ c \end{bmatrix} \cdot [x \ y] =$.
.....

Continued on next page...

Soln. We have a 2×1 times a 1×2 , hence the output is a 2×2 matrix; $\begin{bmatrix} bx & by \\ cx & cy \end{bmatrix}$. ◆

Monday, 25Sep. is YOM KIPPUR, no MQ; if you miss class, get notes from several colleagues. Aaron Thrasher will teach.

Q9: Tue. 26 Sep $M := \begin{bmatrix} 70 & 7 \\ 1 & 2 \end{bmatrix}$. Compute M^{-1} over these three fields. [Write your \mathbb{Z}_p answers using symmetric residues.]

Over \mathbb{Z}_{13} : $M^{-1} = \begin{bmatrix} \dots \\ \dots \end{bmatrix}$. Over \mathbb{Z}_7 : $M^{-1} = \begin{bmatrix} \dots \\ \dots \end{bmatrix}$

Over \mathbb{Q} : $M^{-1} = \begin{bmatrix} \dots \\ \dots \end{bmatrix}$.

Soln: Mat-inverse over \mathbb{Z}_{13} .

```
% (setq M (mat-make-square 70 7 1 2))
  [ 70  7 ]
  [ 1   2 ]
```

```
% (use-ring Modsym-M-ring) ;; Set the ring.
% (set-ring-modulus 13)
```

Reducing, $M \equiv_{13} \begin{bmatrix} 5 & -6 \\ 1 & 2 \end{bmatrix}$. *Consequently,*

```
% (mat-inverse? M)
  [ 5  2 ]
  [ 4  6 ] .
```

By hand: $\det(M) = 10 + 6 \equiv_{13} 3$. And $\langle 1 \div 3 \rangle_{13} \equiv -4$.
Thus $M^{-1} \equiv (-4) \cdot \begin{bmatrix} 2 & 6 \\ -1 & 5 \end{bmatrix} = \begin{bmatrix} -8 & -24 \\ 4 & -20 \end{bmatrix} \equiv \begin{bmatrix} 5 & 2 \\ 4 & 6 \end{bmatrix}$. ♦

OR: If you prefer, $\langle 1 \div 3 \rangle_{13} \equiv 9$, whence

$$M^{-1} \equiv 9 \cdot \begin{bmatrix} 2 & 6 \\ -1 & 5 \end{bmatrix} = \begin{bmatrix} 18 & 54 \\ -9 & 45 \end{bmatrix} \equiv \begin{bmatrix} 5 & 2 \\ 4 & 6 \end{bmatrix}.$$

To Be or not to Be; that is the mod-7 question.

```
% (set-ring-modulus 7) ;; Change the modulus.
;; Well, M is mod-7 congruent to
  [ 0  0 ]
  [ 1  2 ] ,
;; which has zero-determinant, hence is not
;; invertible. Or, we can run the code...
```

```
% (mat-inverse? M)
  JK: Found 1 pivots before column 2.
NIL
```

In Lisp-speak, **NIL** means “DNE”, “false”. I.e., M has no mod-7 inverse. ♦

Rationality at last... Computing by hand, $\det(M) = [70 \cdot 2] - [7 \cdot 1] = 133$, etc. By machine,

```
% (use-ring Rational-ring) ;; Change the ring.
```

```
% (mat-inverse? M)
```

JK: Found 2 pivots before column 2.

$$\begin{bmatrix} 2/133 & -1/19 \\ -1/133 & 10/19 \end{bmatrix}$$

I.e. $M^{-1} = \begin{bmatrix} 2/133 & -1/19 \\ -1/133 & 10/19 \end{bmatrix} \stackrel{\text{note } \frac{1}{133}}{=} \frac{1}{133} \cdot \begin{bmatrix} 2 & -7 \\ -1 & 70 \end{bmatrix}$,

noting that $133 = 7 \cdot 19$. ♦

Wedn., 27Sep. is **CLASS R**, our first in-class exam, which will have a Change-of-Basis question.

This is a closed-book, open-brain exam. Bring both lined and unlined paper. Bring several writing implements. Make sure they write **Dark**.

No faint pencil!

QA: Tue. 03 Oct Let $\mathbf{V} := \mathbb{P}_2(\mathbb{R})$, the VS of 3-topped \mathbb{R} -polynomials. Inside VS $\text{MAT}_{2 \times 2}(\mathbb{R})$, consider the VSS, \mathbf{U} , of upper-triangular matrices. Prove

$$\mathbf{U} \stackrel{\text{VS-iso}}{\cong} \mathbf{V};$$

i.e., that \mathbf{U} and \mathbf{V} are vector-space isomorphic.

ADDENDUM FOR POSTING: [Not part of the MQ.] Consider linear map $\mathbf{T}: \mathbf{V} \rightarrow \mathbf{U}$ by

$$\mathbf{T}(h) := h + h' + h(3).$$

Having constructed a particular iso $\Phi: \mathbf{V} \hookrightarrow \mathbf{U}$, use it to carry \mathbf{T} over to \mathbf{U} . That is, give an explicit description of the action of $\mathbf{S} := \Phi \circ \mathbf{T} \circ \Phi^{-1}$ on the space of upper-triangular matrices.

QB: Wed. 11 Oct With $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ the standard basis for \mathbb{R}^3 , and $\{\mathbf{v}_1, \mathbf{v}_2\}$ the std basis for \mathbb{R}^2 , define linear map $S: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ by: $S(\mathbf{e}_1) = 17\mathbf{v}_1 - 2\mathbf{v}_2$ and $S(\mathbf{e}_2) = 6\mathbf{v}_2$ and $S(\mathbf{e}_3) = -4\mathbf{v}_1 - 3\mathbf{v}_2$.

The matrix of the lefthand-action of S is: $\begin{bmatrix} \dots \end{bmatrix}$

Soln. This matrix, M , acts on colvecs of height 3, producing height-2 colvecs. Hence M is 2×3 . Indeed

$$M = \begin{bmatrix} 17 & 0 & -4 \\ -2 & 6 & -3 \end{bmatrix}. \quad \diamond$$

QC: Fri. 13 Oct Over field \mathbb{Z}_7 , consider matrix

$$A := \begin{bmatrix} 16 & 10 & -8 \\ 3 & 37 & 12 \\ -33 & 27 & 23 \end{bmatrix}.$$

Then

$$A^{-1} = \begin{bmatrix} \dots & \dots & \dots \\ \hline \dots & \dots & \dots \\ \hline \dots & \dots & \dots \end{bmatrix}.$$

Write entries in $[-3..3]$. Also, $\text{Det}(A) = \dots$.

```
(progn (set-ring-modulus 7)(use-ring Modsym-M-ring))
(setq A0orig (mat-make-square 16 10 -8
                               3 37 12
                               -33 27 23))

;; Make the code reduce mod-7, by multiplying
;; by the identity matrix.
(setq A (mat-mul (mat-eye 3) A0orig))
  [ 2   3   -1 ]
  [ 3   2   -2 ]
  [ 2   -1   2 ]

;; Adjoin the identity, to make a 3x6 matrix,
;; then RREF...
(dsetq (DetA InvA) (mat-det-inverse A0orig))

(progn DetA) => 2

(progn InvA)
  [ 1   1   -2 ]
  [ 2   3   -3 ]
  [ 0   -3   1 ]

;; Verify.
(mat-mul A InvA)
  [ 1   0   0 ]
  [ 0   1   0 ]
  [ 0   0   1 ]
```

◆

Helpful tables:

Modulo 7:	x	$\langle 1/x \rangle_7$	x	$\langle 1/x \rangle_7$
	± 1	± 1	± 1	± 1
	± 2	∓ 3	± 3	∓ 2

Multiplication mod 7:

$$\begin{array}{r|rr} 7 & 2 & 3 \\ \hline \dots & \dots & \dots \\ 2 & -3 \\ 3 & -1 & 2 \end{array}$$

Soln. First, let's input the matrix, then reduce it mod 7.

QD: Mon. 16 Oct Over \mathbb{Q} , determinant $\text{Det}(D) = \boxed{\dots}$
 where $D := \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 4 \\ -2 & 1 & 1 \end{bmatrix}$.

Soln. We could use the Rule of Sarrus, but let's instead use RREF and compute the \mathbb{Q} -inverse of D , as well as D 's determinant.

```
(setq D (mat-make-square
  1 2 3
  0 5 4
  -2 1 1))

(dsetq (DetD InvD) (mat-det-inverse D))

DetD => 15

InvD =>
 [ 1/15 1/15 -7/15 ]
 [ -8/15 7/15 -4/15 ]
 [ 2/3 -1/3 1/3 ]

(mat-mul InvD D) =>
 [ 1 0 0 ]
 [ 0 1 0 ]
 [ 0 0 1 ]
```

QE: Fri. 20 Oct

Perm $\pi := [6, 7, 8, 1, 2, 3, 4, 5]$ has $\text{Sgn}(\pi) = +1$ -1.

Perm-sign: This π switches a 3-block with a 5-block, hence can be realized with $3 \cdot 5 = 15$ transpositions, hence is an odd perm.

Alternatively, since $3 \perp 8$, this block-switch makes π a single 8-cycle, so the number of even-len-cycles [EL-cycles] is 1. Thus $\text{Sgn}(\pi) = [-1]^1 = -1$.

In CCN [Canonical Cycle Notation],

$$\pi = \langle 8 \rightarrow 5 \rightarrow 2 \rightarrow 7 \rightarrow 4 \rightarrow 1 \rightarrow 6 \rightarrow 3 \rangle.$$

QF: Mon. 23 Oct Let $M := \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 1 \\ -3 & 1 & 0 \end{bmatrix}$ and $T := \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Mystery vector $X := \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfies $MX = T$. Compute $\text{Det}(M_{2,T})$, where $M_{2,T}$ is M with its 2nd-column replaced by T . Compute $\text{Det}(M)$. Optionally, compute x_2 .

Cramer's thm. Recall that Lisp counts from zero, so our row/col numbers in Lisp code are 0,1,2.

```
% (use-ring Rational-ring)

% (setq M (mat-make-square 1 2 4 0 2 1 -3 1 0))
[ 1 2 4 ]
[ 0 2 1 ]
[ -3 1 0 ]

;; The Target column-vector:
% (setq Tar (mat-make-colvec 1 2 3))
[ 1 ]
[ 2 ]
[ 3 ]

;; Substituting Tar into the middle-column.
% (setq M1Tar (mat-set-submatrix (copy-mat M) 0 1 Tar))
[ 1 1 4 ]
[ 0 2 1 ]
[ -3 3 0 ]

;; Numerator determinant:
% (mat-det M1Tar) => 18

;; Denominator determinant:
% (mat-det M) => 17

;; Hence the second entry of colvec X is 18/17.

;; Let's get all of X:
% (setq InvM (mat-inverse? M))
[ -1/17 4/17 -6/17 ]
[ -3/17 12/17 -1/17 ]
[ 6/17 -7/17 2/17 ]

% (setq XAns (mat-mul InvM Tar))
[ -11/17 ]
[ 18/17 ]
[ -2/17 ]
```

Exercise: Re-solve this, viewing M and T as matrices over field \mathbb{Z}_{13} .

Continued on next page...

QG: Tue.
24 Oct Let $M(x) := \begin{bmatrix} x+1 & 2x & 1 \\ -1 & 1 & 1 \\ 0 & x-1 & 0 \end{bmatrix}$. Then

$$\text{Det}(M(x)) = \underline{\textcolor{teal}{2}} + \underline{\textcolor{teal}{-1}} x + \underline{\textcolor{teal}{-1}} x^2 + \underline{\textcolor{teal}{0}} x^3.$$

Soln. Using the Maple software:

```
M := <<x+1, -1, 0>|<2*x, 1, x-1>|<1,1,0>>;
```

$$M := \begin{bmatrix} x + 1 & 2x & 1 \\ -1 & 1 & 1 \\ 0 & x - 1 & 0 \end{bmatrix}$$

$$\text{Det}(M) \Rightarrow -x^2 + 2 - x$$

Wednesday, 25Oct2023 is CLASS S, our second in-class exam.

This is a closed-book, open-brain exam. Bring both lined and unlined paper. Bring several writing implements. Make sure they write (defun h (a b c d e f) (setq Id-ToE-FrB (mat-Horiz-concat eVec4 (mmc a b c)(mmc d e f)) NewM (mat-mul (mat-inverse? Id-ToE-FrB) M Id-ToE-FrB))) (defun h (a b c d e f) (setq Id-ToE-FrB (mat-Horiz-concat eVec4 (mmc a b c)(mmc d e f)) NewM (mat-mul (mat-inverse? Id-ToE-FrB) M Id-ToE-FrB)))

Dark.

No faint pencil !

QH: Mon. 30 Oct Working over \mathbb{Z}_{11} , let $M := \begin{bmatrix} -2 & 0 & 4 \\ 1 & 2 & 3 \\ 98 & 3 & 1 \end{bmatrix}$. Then characteristic-poly of M

$$\text{is } \varphi_M(t) = -t^3 + t^2 - 2t + 1$$

[Write coeffs as symmetric-residues, in $[-5..5]$.]

Soln. Reducing, $\begin{bmatrix} -2 & 0 & 4 \\ 1 & 2 & 3 \\ 98 & 3 & 1 \end{bmatrix} \equiv_{11} \begin{bmatrix} -2 & 0 & 4 \\ 1 & 2 & 3 \\ -1 & 3 & 1 \end{bmatrix} =: M$

Char-poly is $\text{Det}(M - tI) = \text{Det}\left(\begin{bmatrix} -2-t & 0 & 4 \\ 1 & 2-t & 3 \\ -1 & 3 & 1-t \end{bmatrix}\right)$

which, by cofactor along the top row, equals

$$[-2-t] \cdot \text{Det}\left(\begin{bmatrix} 2-t & 3 \\ 3 & 1-t \end{bmatrix}\right) - 0 + 4 \cdot \text{Det}\left(\begin{bmatrix} 1 & 2-t \\ -1 & 3 \end{bmatrix}\right).$$

Let's compute:

```
% (setq *POLY-var* "t")
% (progn (set-ring-modulus 11) (use-ring Modsym-M-ring))
% (setq M0rig (mat-make-square
%           -2 0 4
%           1 2 3
%           98 3 1))

;; Reduce mod-11, via multiplying by the identity matrix.
% (setq M (mat-mul (mat-eye 3) M0rig))
  [ -2 0 4 ]
  [ 1 2 3 ]
  [ -1 3 1 ]

% (mat-CharMat M)
  [ -t-2 0 4 ]
  [ 1 -t+2 3 ]
  [ -1 3 -t+1 ]

% (mat-CharPoly M0rig)      => -t^3 + t^2 - 2t + 1
% (setq pM (mat-CharPoly M)) => -t^3 + t^2 - 2t + 1

% (iter (for j :from -5 :to 5)
  (format t "~-p(~2D) = ~2D" j (poly-eval pM j)) )

p(-5) = -4    p(-2) = -5    p( 1) = -1    p( 4) = 0
p(-4) =  1    p(-1) =  5    p( 2) =  4    p( 5) =  1
p(-3) = -1    p( 0) =  1    p( 3) = -1
```

As 4 is zero of φ_M , (poly-divide pM (poly-cree -1 4)) yields $\varphi_M(t) = -1 \cdot [t - 4] \cdot [t^2 + 3t + 3]$.

Since $\text{Char}(\mathbb{Z}_{11}) \neq 2$, we can apply the quadratic formula to $f(t) := t^2 + 3t + 3$. We already know f is \mathbb{Z}_{11} -irreducible, so $\text{Discr}(f) \neq \square$, but let's check anyway: $\text{Discr}(f) = 3^2 - 4 \cdot 3 \equiv -3$.

Yet the mod-11 squares are 1, 4, -2, 5, 3.

Getting fancy. In grad-school algebra, one learns that there is an extension field $\mathbb{G} \supset \mathbb{Z}_{11}$ over which f factors completely. [The smallest such is called the “*splitting field* of f over \mathbb{Z}_{11} .”] Over \mathbb{G} , then, our char-poly factors completely as

$$\varphi_M(t) = -1 \cdot [t - 4] \cdot [t - \alpha] \cdot [t - \beta],$$

for some some $\alpha, \beta \in \mathbb{G} \setminus \mathbb{Z}_{11}$.

If $\alpha = \beta$, then M *might* be diagonalizable. However, if $\alpha \neq \beta$, then M *will* be \mathbb{G} -conjugate to $\begin{bmatrix} 4 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \beta \end{bmatrix}$. So the question becomes...

Does f have a repeated root? In our current setting, f has a repeated root IFF $\text{GCD}(f, f')$ is non-trivial.

In our case, $f'(t) = 2t + 3$. Since f' is degree-1, were $\text{GCD}(f, f')$ non-trivial, then f' would divide f . But f' is degree-1, so f' has a root in \mathbb{Z}_{11} ; yet we know that f does not. **THE UPSHOT:**

Matrix M is *not* diagonalizable over \mathbb{Z}_{11} , but is \mathbb{G} -diagonalizable, with three distinct eigenvalues.

A better basis? A basis for $\text{LNul}(M - 4I)$ will have a single vector.

```
% (setq M-4I (mat-sub M (mat-scal-mult 4 (mat-eye 3))))
  [ 5 0 4 ]
  [ 1 -2 3 ]
  [ -1 3 -3 ]
  [ -3 ]
% (setq eVec4 (mat-LNul M-4I)) => [ 0 ]
  [ 1 ]

To this eVec, let's automate expanding it to a basis, then
converting  $M$  to that basis.

% (defaliasqq mmc mat-make-colvec)
% (defun CoB-automator (a b c d e f)
  (setq
    Id-ToE-FrB (mat-Horiz-concat eVec4 (mmc a b c) (mmc d e f))
    NewM (mat-mul (mat-inverse? Id-ToE-FrB) M Id-ToE-FrB)
  )
  [ 4 0 1 ]
% (CoB-automator 0 1 0 0 0 2) => [ 0 2 -5 ]
  [ 0 -4 -5 ]
```

Challenge:

Is M similar to a matrix OTForm $\begin{bmatrix} 4 & a & b \\ 0 & c & d \end{bmatrix}$??

¹This is analogous to the following:

The general rotation matrix is not diagonalizable over \mathbb{R} , but is diagonalizable over \mathbb{C} .

Ungiven MQ: Fri. 03 Nov Over \mathbb{C} , matrix $G := \begin{bmatrix} -1 & 0 & 1 \\ 0 & i & 0 \\ -2 & 0 & 2 \end{bmatrix}$ is diagonalizable. Char-poly $\varphi_G(t) = \begin{bmatrix} -1 & 0 & 1 \\ 0 & i & 0 \\ -2 & 0 & 2 \end{bmatrix}$, and factors as $\varphi_G(t) = -1 \cdot [t - \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}] \cdot [t - \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}] \cdot [t - \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}]$. Invertible matrix $U = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ has that $D := U^{-1}GU$ is diagonal, where $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Soln. Our CoB matrix will be $U := [b_0 \ b_1 \ b_2]$ for G -eVecs b_0, b_1, b_2 that we will compute.

The middle column of G shows i is an $e\text{Val}$, with $e\text{Vec}$ $b_0 := \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Cols 0 and 2 of G add to the zero-vector, so

G has nt-nullspace. We can let $b_1 := \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ be an $e\text{Vec}$ for $e\text{Val } 0$.

We now know $G \xrightarrow{\text{sim}} \begin{bmatrix} i & 0 & ? \\ ? & 0 & ? \end{bmatrix}$; actually $G \xrightarrow{\text{sim}} \begin{bmatrix} i & 0 & ? \\ 0 & 0 & 0 \end{bmatrix}$; since we were assured G is diagonalizable.

Char-poly. Recall $\varphi_G(t) = -t^3 + \text{Tr}(G)t^2 + ?t + \text{Det}(G)$. So $\varphi_G(t) = -t^3 + [1+i]t^2 + ?t$. *Sigh. We can't put it off any longer; let's compute:*

```
(setq *POLY-var* "t") (use-ring GaussRational-ring)
(setq G (mat-make-square   -1   0   1
                           0   imi   0
                           -2   0   2))
(setq p (mat-CharPoly G)) => -t^3 + (1+i)t^2 + (-i)t
(setq t-0 (poly-cree 1 0)   t-i (poly-cree 1 (- imi)))
(dsetq (pDiv-t0 Rem) (poly-divide p t-0))
  -t^2 + (1+i)t + (-i)           <ZIP poly>
(dsetq (pDiv-t0-ti Rem) (poly-divide pDiv-t0 t-i))
  -t+1                           <ZIP poly>
```

Cool. A smidgeon of elbow-grease has shown that

$$\varphi_G(t) = -1 \cdot [t - \mathbf{i}] \cdot [t - \mathbf{0}] \cdot [t - \mathbf{1}]$$

So...

Computing an eVec for eVal=1.

```
(setq G-1I (mat-sub G (mat-eye 3)))
  [ -2   0   1 ]
  [  0  -1+i   0 ]
  [ -2   0   1 ]
  [  1/2  ]
(mat-LNul G-1I) => [  0  ]
  [  1  ]
(setq b2 (mat-make-colvec 1 0 2)) => [  1  ]
  [  0  ]
  [  2  ]
(setq U (mat-Horiz-concat b0 b1 b2))
  [  0   1   1 ]
  [  1   0   0 ]
  [  0   1   2 ]
(setq InvU (mat-inverse? U))
  [  0   1   0 ]
  [  2   0  -1 ]
  [ -1   0   1 ]
(setq CDiagonalized (mat-mul InvU G U))
  [  i   0   0 ]
  [  0   0   0 ]
  [  0   0   1 ]
```

Nifty.

Ungiven MQ: Mon. 06 Nov P.279#7 Over \mathbb{C} , let $A := \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$.

For $n = 1, 2, 3, \dots$, $A^n = \dots$.

Soln. The idea is to see if A is conjugate to a diagonal matrix.

```
(setq A (mat-make-square 1 4 2 3)) => [ 1  4 ]
                                             [ 2  3 ]

(setq pA (mat-CharPoly A)) => t^2 - 4t - 5

;; So eVals are 5 and -1.
(setq I2 (mat-eye 2)) => [ 1  0 ]
                             [ 0  1 ]

(setq b0 (mat-LNul (mat-sub A (mat-scal-mult 5 I2)))
      b1 (mat-LNul (mat-sub A (mat-scal-mult -1 I2)))) )
[ 1 ] [ -2 ]
[ 1 ] , [ 1 ]

(setq U (mat-Horiz-concat b0 b1) InvU (mat-inverse? U))
[ 1 -2 ] [ 1/3 2/3 ]
[ 1  1 ] , [ -1/3 1/3 ]

;;Checking...
(setq D (mat-mul InvU A U)) => [ 5  0 ]
                                     [ 0 -1 ]
```

Consequently

$$A^n = UD^nU^{-1} = \frac{1}{3} \begin{bmatrix} 5^n + 2 \cdot (-1)^n & 2(5^n - (-1)^n) \\ 5^n - (-1)^n & 2 \cdot 5^n + (-1)^n \end{bmatrix}.$$

Elegant...

Testing our formula.

```
(defun Formula-A^n (n)
  (setq F (expt 5 n) ;; Five
        G (expt -1 n) ;; neG-one
        )
  (mat-scal-mult 1/3
    (mat-make-square (+ F G G) (* 2 (- F G))
                    (- F G) (+ F F G))
    )
  )

(defun Test-A^n (Bnd)
  (iter (for n :from 0 :below Bnd)
    (for A^n :first (mat-eye 2) :then (mat-mul A^n A))
    (format t "~~%2D: ~A. ~A" n (Formula-A^n n) A^n)
    )
  )

;;Testing the formula...
(Test-A^n 6)
0: [ 1  0 ] [ 1  0 ]
[ 0  1 ] , [ 0  1 ]

1: [ 1  4 ] [ 1  4 ]
[ 2  3 ] , [ 2  3 ]

2: [ 9  16 ] [ 9  16 ]
[ 8  17 ] , [ 8  17 ]

3: [ 41  84 ] [ 41  84 ]
[ 42  83 ] , [ 42  83 ]

4: [ 209  416 ] [ 209  416 ]
[ 208  417 ] , [ 208  417 ]

5: [ 1041  2084 ] [ 1041  2084 ]
[ 1042  2083 ] , [ 1042  2083 ]
```

QI: Mon.
20 Nov In \mathbb{R}^3 , consider colvecs $\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3$

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix},$$

respectively. With $\text{IP} = \text{DotProduct}$, compute pairwise orthogonal $\mathbf{b}_1 := \mathbf{g}_1, \mathbf{b}_2, \mathbf{b}_3$ using Gram-Schmidt, yielding

$$\begin{aligned} \mathbf{b}_2 &= \begin{bmatrix} -1 \\ \dots \\ 1 \end{bmatrix}^t \quad \text{and} \\ \mathbf{b}_3 &= \begin{bmatrix} -5/6 \\ \dots \\ 5/6 \end{bmatrix}^t. \end{aligned}$$

Soln. Using our formula for ortho-projection:

```
(ip-select t)  => "Using COLVEC-inner-product."
(use-ring GaussRational-ring)
(defaliasqq mmc mat-make-colvec)
(setq g1 (mmc 1 0 1))
  g2 (mmc 2 1 4)
  g3 (mmc 0 0 5))

(setq B1 G1) ;; Computing B1:
;; Computing B2:
(setq ratio (/ (ip B1 G2) (ip B1 B1))) => 3
(setq ProjG2onB1 (mat-scal-mult ratio B1)) => [ 3 ]
  [ 0 ]
  [ 3 ]

(setq B2 (mat-sub G2 ProjG2onB1)) => [ -1 ]
  [ 1 ]
  [ 1 ]

(setq ratio (/ (ip B1 G3) (ip B1 B1))) => 5/2
(setq ProjG3onB1 (mat-scal-mult ratio B1)) => [ 5/2 ]
  [ 0 ]
  [ 5/2 ]

(setq ratio (/ (ip B2 G3) (ip B2 B2))) => 5/3
(setq ProjG3onB2 (mat-scal-mult ratio B2)) => [ -5/3 ]
  [ 5/3 ]
  [ 5/3 ]

(setq B3 (mat-sub G3 (mat-add ProjG3onB1 ProjG3onB2)))
  [ -5/6 ]
  [ -5/3 ]
  [ 5/6 ]

;; Checking pairwise orthogonality:
(list (ip b1 b2) (ip b1 b3) (ip b2 b3)) => (0 0 0)
```


QJ: Tue.
21 Nov In \mathbb{C}^4 , consider $\mathbf{g}_1, \mathbf{g}_2, \mathbf{g}_3$, column-vectors

$$\begin{bmatrix} 0 \\ \mathbf{i} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2\mathbf{i} \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1+\mathbf{i} \\ 1 \end{bmatrix},$$

respectively. With $\text{IP} = \text{DotProduct}$, compute pairwise orthogonal $\mathbf{b}_1 := \mathbf{g}_1$, \mathbf{b}_2 , \mathbf{b}_3 using Gram-Schmidt, yielding

$$\mathbf{b}_2 = [0, 0, 0, 2i]^t \text{ and}$$

$$\mathbf{b}_3 = [1, 0, 1+i, 0]^t.$$

Soln. This triple can be orthogonalized “by inspection”. Alternatively, . . .

```
(ip-select t)  =>  "Using COLVEC-inner-product."  
(use-ring GaussRational-ring)
```

```
(defalias sqq mmc mat-make-colvec)
(setq g1 (mmc 0      imi      0      0      ))
      g2 (mmc 0      1      0      #C(0 2))
      g3 (mmc 1      0      #C(1 1) 1      ))
[ 0 ] [ 0 ] [ 1 ]
[ i ] [ 1 ] [ 0 ]
[ 0 ] , [ 0 ] , [ 1+i ]
[ 0 ] [ 2i ] [ 1 ]
```

```
(setq B1 G1) ;; "Computing" B1
```

```
(setq ratio (/ (ip B1 G3) (ip B1 B1))) => 0
;; Already perpendicular, cool.
```

```
(setq ratio (/ (ip B2 G3) (ip B2 B2))) => -[1/2]i
(setq ProjG3onB2 (mat-scal-mult ratio B2)) => [ 0
[ 0
[ 0
[ 0
[ 1
(setq B3 (mat-sub G3 ProjG3onB2)) => [ 0 ]
[ 1+i ]
[ 0 ]
```

Ans. We test whether the **b**-tuple is pairwise-ortho:

```

(list (ip b1 b2) (ip b1 b3) (ip b2 b3)) => (0 0 0)

;;;;;;;;
;; Checking that Span(B1, B2, B3) = Span(G1, G2, G3).
;;;;;;;;
(setq Bert (mat-Horiz-concat B1 B2 B3 G1 G2 G3))
  [ 0 0 1 0 0 1 ]
  [ i 0 0 i 1 0 ]
  [ 0 0 1+i 0 0 1+i ]
  [ 0 2i 0 0 2i 1 ]

(rref-mtab-beforecol Bert)
JK: Found 3 pivots before the sixth column.

c0 c1 c2 c3 c4 c5 Row operations
|-----|
| 1 0 0 1 -i 0 | 0 -i 0 0 0
| 0 1 0 0 1 -[1/2]i | 0 0 0 -[1/2]
| 0 0 1 0 0 1 | 0 0 [1/2]-[1/2]i 0
| 0 0 0 0 0 0 | 1 0 [-1/2]+[1/2]i 0
|-----|

```

The *RREF* shows that, were we to exchange columns c_4, c_5, c_6 with c_1, c_2, c_3 , we would have three pivots in c_4, c_5, c_6 . Consequently $\text{Spn}(c_4, c_5, c_6) = \text{Spn}(c_1, c_2, c_3)$. ♦

QK: Mon. 27 Nov The real-IPS $\mathbf{P}(\mathbb{R})$, of polynomials, has inner-product

$$\langle g, h \rangle := \int_0^1 [g \cdot h] .$$

Define $F(x) := x$ and $S(x) := x^2$ [First and Second powers]. Then $\text{Proj}_F(S) = \alpha \cdot F$ for scalar $\alpha =$

.....

And $[\text{Orth}_F(S)](x) =$

.....

Channeling my inner product. For non-negative reals J and K , note

$$\langle x^J, x^K \rangle \stackrel{\text{def}}{=} \int_0^1 x^{J+K} dx = \frac{1}{J+K+1} .$$

Hence

$$\alpha = \frac{\langle x, x^2 \rangle}{\langle x, x \rangle} = \frac{1/[1+2+\textcolor{violet}{1}]}{1/[1+1+\textcolor{violet}{1}]} = \frac{3}{4} .$$

Thus,

$$[\text{Orth}_F(S)](x) = x^2 - \frac{3}{4}x . \quad \diamond$$

QL: Tue. 28 Nov Linear operators S, T, U map $\mathbf{V} \rightarrow \mathbf{V}$, where \mathbf{V} is a finite-dim' al \mathbb{C} -VS. For $\alpha \in \mathbb{C}$, give a formula for the adjoint operator $[\alpha S + TU]^*$.

Soln. Laconically, $[\alpha S + TU]^*$ equals

$$[\alpha S]^* + [TU]^* = \bar{\alpha} S^* + U^* T^* . \quad \diamond$$

QM: Tues. 05 Dec Katie's name is :

Xavier Aahan Luke Dawson Brighten Yunus Pietro Jake Ben Michael George Yun Allan

Games Party: ! ! Wed. 06 Dec Bring games and look photogenic, for our traditional Games Party, from 10:40 am to 4:40 pm, at Pascal's Cafe.