

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a **natnum**. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”. [Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Use $\overline{\mathbb{R}} = [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$, the **extended reals**.

An “*interval of integers*” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$, is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). trnfn: ‘transformation’. cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’ as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** function, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**.

For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘*Polynomial-times-exponential*’, e.g, $[3 + t^2] \cdot e^{4t}$. PolyExp-sum: ‘*Sum of polyexps*’. E.g, $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Phrases. WLOG: ‘*Without loss of generality*’. IFF: ‘*if and only if*’. TFAE: ‘*The following are equivalent*’. ITOf: ‘*In Terms Of*’. OTForm: ‘*of the form*’. FTSOC: ‘*For the sake of contradiction*’. And ∇ = “*Contradiction*”.

IST: ‘*It Suffices To*’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘*with respect to*’ and s.t: ‘*such that*’.

Latin: e.g: *exempli gratia*, ‘*for example*’. i.e: *id est*, ‘*that is*’. N.B: *Nota bene*, ‘*Note well*’. inter alia: ‘*among other things*’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Plex [2023g] quizzes so far...

Q1: Fri.
20 Jan Euler $\varphi(56) =$.

Mod $K:=51$, the reciprocal $\langle \frac{1}{20} \rangle_K =$ $\in [0..K)$.

[Hint: $\frac{1}{20} = 5 - 20x$ solves $5 - 20x \equiv_K 2$.]

Q2: Wed.
25 Jan With $N := 85$, then $\varphi(N) = \lfloor \dots \dots \dots \rfloor$. Thus EFT (Euler-Fermat) says that $3^{645} \equiv_N \lfloor \dots \dots \dots \rfloor \in [0..N)$.

Q3: Fri.
27 Jan Note that $\text{GCD}(55, 33, 15) = 1$. Find particular integers S, T, U so that $55S + 33T + 15U = 1$:

$$S = \lfloor \dots \dots \dots \rfloor, \quad T = \lfloor \dots \dots \dots \rfloor, \quad U = \lfloor \dots \dots \dots \rfloor.$$

[Hint: $\text{GCD}(\text{GCD}(55, 33), 15) = 1$.]

Q4: Mon.
30 Jan With $M := 22$ and $\mathbf{J} := [0..M]$, use repeated-squaring to compute $6^{128} \equiv_M \lfloor \dots \dots \dots \rfloor \in \mathbf{J}$. Since 133 equals $2^7 + 2^2 + 2^0$, power $6^{133} \equiv_M \lfloor \dots \dots \dots \rfloor \in \mathbf{J}$.

[Hint: Compute with symm. residues, and use periodicity.]

Q5: Fri.
03 Feb Carmichael fnc $\lambda(385 \cdot 29 \cdot 43) = 2^A \cdot 3^B \cdot 5^C \cdot 7^D \cdot 11^E$

where $A = \lfloor \dots \rfloor$, $B = \lfloor \dots \rfloor$, $C = \lfloor \dots \rfloor$, $D = \lfloor \dots \rfloor$, $E = \lfloor \dots \rfloor$.

Q6: Mon. 20 Feb Over alphabet $\mathbf{G} = \{a, b, c\}$, our UD code has length-spectrum $\vec{\ell} = (1, 2, 2, 2, 2, 3)$. Its Kraft-sum equals $\Sigma(\vec{\ell}) = 1 - \dots = \dots$.

Ordering our alphabet as $a < b < c$, the proof from our previous class constructs the following specific prefix code with spectrum $\vec{\ell}$:

$\dots \downarrow \dots \downarrow \dots \downarrow \dots \downarrow \dots \downarrow \dots \downarrow \dots$

Home-U due, 11:30AM. Wed. 22 Feb ... slid under my office door, LIT402. After having successfully handed-in your Home-U, *email me* that you have done so, and include your **Team-U number** in the message.

Have printed-out Problem sheet, and made that the *first page* of youw write-up. Number the pages (probably by hand) $1/47$ [that is the Problem sheet], $2/47$... $47/47$. Handwrite-in the blanks on the problem sheet, the requested answers.

Put name/ordinals/Team-number where requested, and sign the Honor Code.

Class-U. Wed. 22 Feb

In-class closed-book Open-Brain exam.
Please bring lined-paper for computation. You may also want to bring colored pens/pencils for diagrams.

Q7: Fri.
24 Feb *Am I in class today?*

circle one “Yes!” “Of course!”

“I wouldn’t miss it for the world!”

Q9: Mon.
20 Mar Base-2 (distribution-)entropy of $\vec{v} := (\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{4})$

is $\mathcal{H}(\vec{v}) = \dots$.

The due-date for this year’s *Robert Long Essay Competition (RLEC)* is Thurs., 30 Mar., with a PDF emailed to Prof. K. **True!** **Yes!**

Q8: Fri.
10 Mar Congruences $z \equiv_{18} 5$, and $z \equiv_5 17$, fuse into $z \equiv_{90} T$, where $T = \dots \in [0..90]$.

[Note: $\text{LCM}(18, 5) = 90$].

QA: Fri.
24 Mar Legendre symbol $\left(\frac{47}{53}\right)$ is

+1 -1 0.

QB: Fri.
14 Apr \exists *Math Festival* this **Sunday, 16 Apr, 10AM–1PM**, in the *Rion Ballroom* of Reitz Union, open to all.

Circle : True! Yes! What's "Math"?

End of semester; looking forward to our Games Party!