

PRACTICE: Binomials, \mathbb{C} -arithmetic

SeLo & DfyQ [Prof. King's classes]

23 June, 2022 (at 13:48)

Welcome. [This is not a practice exam; just some practice problems.] Note: **ITO**=In-Terms-Of.

P1:

a Values $[\pi \uparrow 3] =$ and $[\frac{5}{3} \downarrow 4] =$

b Binomial coefficient $\binom{7}{4} =$ =

c Multinomial coefficient $\binom{9}{4, 2, 3} =$ =

[Note: Write your ans. ITOf factorials, then also write it as a single integer, or product of two, without factorials.]

d In $[5x^2 + 4y + z^3 + 7]^{20}$,
compute these coeffs:

Coeff($x^6 z^8$) =

Coeff($y^5 z^6$) =

[You may write answers as a product numbers, powers and multinomial-coeffs.]

P2:

e Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} =$ + $i \cdot$ [.....].

Thus $\operatorname{Im}\left(\frac{5-i}{2+3i}\right) =$

By the way, $|5-3i| =$

f Let $A := 2+i$, $B := 1-i$, $P := 5$, $Q := 3i$, $\alpha := 1$ and $\beta := 1+3i$. Complex numbers w and z satisfy

$$\begin{aligned} Aw + Bz &= \alpha \quad \text{and} \\ Pw + Qz &= \beta. \end{aligned}$$

Then $w =$

g Reals $x =$ and $y =$

where $x+iy = [1+i]^{86}$. [Hint: Multiplying complexes multiplies their moduli, and adds their angles.]

h Complex number $[x+iy]^2 = -8i$, for real numbers

$x > y$, where $x =$ and $y =$

For students who have seen the complex-exponential function:

i Number $6 \cdot \exp\left(i \cdot \frac{5\pi}{3}\right)$ equals $x + yi$ for reals $x =$ and $y =$

With $v := \exp(-2+5i)$, then $|v| =$

And $|v|$ lies in circle the correct interval

$[0, \frac{1}{2})$, $[\frac{1}{2}, 1)$, $[1, 2)$, $[2, 4)$, $[4, 8)$, $[8, \infty)$.