

Permutation Basics

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 22 October, 2023 (at 10:05)

Please learn pages 1–3.

Permutations

On a set Ω , a bijection $\pi: \Omega \rightarrow \Omega$ is also called a “**permutation** of Ω ”. Use **perm** to abbrev. “permutation”. A **token** is an element $x \in \Omega$. Use **Id $_{\Omega}$** for the identity perm, $x \mapsto x$.

Composition. It will be convenient to have symbols for composition in *both* directions. Use \triangleleft as a synonym of \circ . Thus

1a: Both $[\alpha \triangleright \beta](x)$ and $[\beta \triangleleft \alpha](x)$ mean $\beta(\alpha(x))$.

[Think of the triangle as *pointing* in the direction of data-flow.] Use $\beta^{\circ n}$ for “the n^{th} -**composition-power** of β ”. E.g

$$1b: \quad \beta^{\circ 3}(x) = \beta(\beta(\beta(x))),$$

and $\beta^{\circ -1}$ is the **inverse function** of β , which we will usually just write as β^{-1} . When composition is understood, we will write β^3 rather than $\beta^{\circ 3}$.

The \mathbb{S}_{Ω} group. The set all permutations on Ω is “the **symmetric group** on Ω ”, written \mathbb{S}_{Ω} .

DEFN: We will view permutation-composition as going *L-to-R*; permutation $\alpha\beta$ is $\alpha \triangleright \beta$, first applying α , then β . So $[\alpha\beta](x)$ is $\beta(\alpha(x))$.

Hence triple $(\mathbb{S}_{\Omega}, \triangleright, \text{Id}_{\Omega})$ is a group.

NOTE: Our *L-to-R* convention for permutations is the *opposite* of Gallian’s textbook, but *agrees* with the convention used in Prof. Miklos Bona’s Combinatorics text, which you may be using next semester.

Orbits. For $\beta \in \mathbb{S}_{\Omega}$, “the β -**orbit** of token x ” is the set

$$\mathcal{O}_{\beta}(x) := \{\beta^{\circ k}(x) \mid k \in \mathbb{Z}\},$$

together with the information that β maps $\beta^{\circ k}(x)$ to $\beta^{\circ [k+1]}(x)$. A β -orbit is either *finite* [a K -cycle for some posint K], or is *infinite*, and is thus a copy of

the **add-one** function mapping $\mathbb{Z} \rightarrow \mathbb{Z}$. This last is an “ ∞ -cycle”, as “cycle” has come to mean ‘generated by a single element’, in various branches of algebra.

Henceforth, the token-set is *finite*, of cardinality $N := |\Omega|$. Further, writing the symmetric group as \mathbb{S}_N shall mean that Ω is $[1..N]$ or $[0..N]$. \square

Cycle-structure. Consider the following shuffle, π , of an Ace-through-King suit, Ω . Our π goes from the std order [top line], to the order in the bottom line:

A	2	3	4	5	6	7	8	9	T	J	Q	K
9	T	3	Q	A	7	4	6	5	J	K	8	2

This is called “the **two-line** presentation of π ”. [If the std token-order were understood, then just the bottom line could be shown; the **one-line** presentation of π .] Here, the tokens are the thirteen cards.

The **cycle-structure** of π is a listing of all its cycles. Note that π maps A \rightarrow 9 \rightarrow 5 \rightarrow A; this is a 3-cycle, which I write as $\langle A \ 9 \ 5 \rangle$. [For emphasis or clarity, I might write it as $\langle A \rightarrow 9 \rightarrow 5 \rangle$ or, more typically, $\langle A, 9, 5 \rangle$.]

This *same cycle* could be written as $\langle 9 \ 5 \ A \rangle$ or as $\langle 5 \ A \ 9 \rangle$. Notice, however, that $\langle 5 \ 9 \ A \rangle$ is a *different* cycle; indeed, $\pi(5)$ is *not* 9.

So the **cycle-structure** of π is

$$2a: \quad \pi = \langle 3 \rangle \langle A \ 9 \ 5 \rangle \langle 2 \ T \ J \ K \rangle \langle 4 \ Q \ 8 \ 6 \ 7 \rangle.$$

Disjoint Cycle Notation [DCN]. In (2a), the cycles are *disjoint*; no token occurs in more than one cycle. Listing the cycles from left-to-right, first the **1-cycles** [if any], then the **2-cycles**, etc. is an instance of **DCN**, *disjoint cycle-notation*. The notation is not unique; e.g, the multiple same-length cycles could be listed in any order. Moreover, a cycle could be written starting with any of its tokens. [See CCN, below]. In DCN, if the token-set is understood, one may omit writing the **1-cycles**, e.g, our (2a) could be abbreviated as

$$2b: \quad \pi = \langle A \ 9 \ 5 \rangle \langle 2 \ T \ J \ K \rangle \langle 4 \ Q \ 8 \ 6 \ 7 \rangle.$$

However, a **full-DCN** means to list all cycles, including the **1-cycles**.

Canonical Cycle Notation [CCN]. When the token set has a total-order, e.g. $[1..N]$ or $\{a, b, c, d\}$, then we can use *CCN, canonical cycle-notation*:

i: Write each cycle with its *largest* token first.

ii: List cycles L-to-R with first-tokens increasing.

For example, permutation τ on ten tokens is

$$\dagger: \quad \begin{array}{cccccccccc} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 0 & 4 & 2 & 7 & 6 & 5 & 9 & 1 \end{array}$$

It has four cycles; one is $\langle 8 9 1 \rangle$; however CCN requires the largest token first, so we write it as $\langle 9 1 8 \rangle$. The other cycles are $\langle 6 \rangle$ and $\langle 4 2 0 3 \rangle$ and $\langle 7 5 \rangle$. Initial tokens are $9, 6, 4, 7$; we put these in increasing order as $4 < 6 < 7 < 9$. Thus

$$\dagger: \quad \text{CCN}(\tau) = \langle 4 2 0 3 \rangle \langle 6 \rangle \langle 7 5 \rangle \langle 9 1 8 \rangle.$$

CCN requires all cycles, *including* 1-cycles, be listed.

What is the CCN of τ^{-1} ? To invert a DCN simply reverses the order in each cycle; so a DCN of τ^{-1} is

$$\langle 3 0 2 4 \rangle \langle 6 \rangle \langle 5 7 \rangle \langle 8 1 9 \rangle.$$

But CCN needs each cycle to start with its largest token. So

$$\ddagger: \quad \text{CCN}(\tau^{-1}) = \langle 4 3 0 2 \rangle \langle 6 \rangle \langle 7 5 \rangle \langle 9 8 1 \rangle.$$

Cycle-signature [CySig]. The *cycle-signature* of a permutation, lists the number of cycles of each length, from shortest to longest, with the “exponent” showing *how many* cycles of that length. For τ above, $\text{CySig}(\tau) = [1^1, 2^1, 3^1, 4^1]$. A more interesting example is perm π from (2a). $\text{CySig}(\pi)$ equals

$$2c: \quad [1^2, 3^1, 4^2] \stackrel{\text{note}}{=} [1^2, 2^0, 3^1, 4^2, 5^0 \dots],$$

since π has two 1-cycles, one 3-cycle, and two 4-cycles.

Each perm ν has $\text{CySig}(\nu^{-1}) = \text{CySig}(\nu)$.

Composing perms. In \mathbb{S}_7 , consider $\alpha := \langle 1 4 6 2 7 \rangle$ [omitting the 1-cycles] and $\beta := \langle 2 6 \rangle \langle 5 4 7 \rangle$. We seek to write $\alpha\beta$ [recall, our perm-composition is L-to-R] in CCN. Tracing tokens,

$$\begin{array}{ccccccccc} \langle 1 4 6 2 7 \rangle & & \langle 2 6 \rangle & & \langle 5 4 7 \rangle & & & & \\ \begin{array}{c} 1 \\ 7 \end{array} \xrightarrow{\hspace{1cm}} & 4 & \xrightarrow{\hspace{1cm}} & 4 & \xrightarrow{\hspace{1cm}} & 7 & ; \\ \begin{array}{c} 7 \\ 1 \end{array} \xrightarrow{\hspace{1cm}} & 1 & \xrightarrow{\hspace{1cm}} & 1 & \xrightarrow{\hspace{1cm}} & 1 & . \\ \begin{array}{c} 2 \\ 5 \\ 4 \end{array} \xrightarrow{\hspace{1cm}} & 7 & \xrightarrow{\hspace{1cm}} & 7 & \xrightarrow{\hspace{1cm}} & 5 & ; \\ \begin{array}{c} 5 \\ 4 \end{array} \xrightarrow{\hspace{1cm}} & 5 & \xrightarrow{\hspace{1cm}} & 5 & \xrightarrow{\hspace{1cm}} & 4 & ; \\ \begin{array}{c} 4 \\ 3 \end{array} \xrightarrow{\hspace{1cm}} & 6 & \xrightarrow{\hspace{1cm}} & 2 & \xrightarrow{\hspace{1cm}} & 2 & . \\ \begin{array}{c} 3 \\ 6 \end{array} \xrightarrow{\hspace{1cm}} & 3 & \xrightarrow{\hspace{1cm}} & 3 & \xrightarrow{\hspace{1cm}} & 3 & . \\ \begin{array}{c} 6 \\ 2 \end{array} \xrightarrow{\hspace{1cm}} & 2 & \xrightarrow{\hspace{1cm}} & 6 & \xrightarrow{\hspace{1cm}} & 6 & . \end{array}$$

yields a 2-cycle, 3-cycle, and two 1-cycles. Hence

$$\text{CCN}(\alpha\beta) = \langle 3 \rangle \langle 5 4 2 \rangle \langle 6 \rangle \langle 7 1 \rangle.$$

Sign of a permutation

Several of the above concepts extend to permutations on an ∞ token-set, but the *sign* of a permutation is only defined for finite^{♡1} permutations. For a perm β :

#Ev(β) counts the # of even-length β -cycles.
 3: #Od(β) counts the number of odd-length cycles.
 Let #All(β) := #Ev(β) + #Od(β).

For (2a), then, #All(π) = 5 and #Ev(π) = 2.

The *sign* of finite permutation β is

$$3': \text{Sgn}(\beta) := [-1]^{\# \text{Ev}(\beta)}.$$

Perm β is *even* [$\text{Sgn}(\beta) = +1$], or *odd* [$\text{Sgn}(\beta) = -1$], depending on whether #Ev(β) is even or odd.

A *transposition* is a permutation comprised of a single 2-cycle; its CySig is $[1^{[N-2]}, 2^1]$.

Every permutation on a [finite] token-set is a composition^{♡2} of transpositions.

The goal of the section to follow, is to prove this important theorem.

4: **Perm-sign thm.** For permutations $\alpha, \beta \in \mathbb{S}_\Omega$ on a finite token-set: $\text{Sgn}(\alpha\beta) = \text{Sgn}(\alpha) \cdot \text{Sgn}(\beta)$ and $\text{Sgn}(\alpha^{-1}) = [\text{Sgn}(\alpha)]^{-1} \stackrel{\text{note}}{=} \text{Sgn}(\alpha)$.

Consequently, Sgn is a group-homomorphism from $(\mathbb{S}_\Omega, \triangleright, \text{Id}_\Omega)$ to $(\{\pm 1\}, \cdot, 1)$. \diamond

We'll prove this in class on Wedn., 05Oct.

^{♡1}More generally, for permutations of *finite support*.

^{♡2}If perm β fixes every token then β is the empty composition. Else there is a token x such that $y := \beta(x) \neq x$; so composition $\beta \triangleright \langle y, x \rangle$ fixes at least one more token than did β , hence is a composition of transpositions.