

Linear Algebra GenFacts

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 26 August, 2023 (at 17:01)

ABSTRACT: Centralizers. Determinant facts (not done).

Vandermonde Matrix

(This works over every integral domain. And we can freely pass to its field-of-quotients.) An $[N+1]$ -tuple $\mathbf{b} := (\beta_0, \beta_1, \dots, \beta_N)$ determines a product

$$1: \quad G(\mathbf{b}) := \prod_{0 \leq i < j \leq N} [\beta_j - \beta_i]$$

and the $[N+1] \times [N+1]$ **Vandermonde matrix**

$$2: \quad V_{\mathbf{b}} := \begin{bmatrix} 1 & \beta_0 & \beta_0^2 & \dots & \beta_0^N \\ 1 & \beta_1 & \beta_1^2 & \dots & \beta_1^N \\ 1 & \beta_2 & \beta_2^2 & \dots & \beta_2^N \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \beta_N & \beta_N^2 & \dots & \beta_N^N \end{bmatrix}.$$

3: **Vandermonde Lemma.** For all tuples \mathbf{b} ,

$$3i: \quad \text{Det}(V_{\mathbf{b}}) = G(\mathbf{b}). \quad \diamond$$

Proof. We induct on N . For $N=0$, remark that

$$\text{Det}([1]) = 1 = \text{Empty product} = G((\beta_0)).$$

Fix an $N \geq 1$. Consider the $N \times N$ submatrix

$$S := \begin{bmatrix} \beta_1 & \beta_1^2 & \dots & \beta_1^N \\ \beta_2 & \beta_2^2 & \dots & \beta_2^N \\ \vdots & \vdots & & \vdots \\ \beta_N & \beta_N^2 & \dots & \beta_N^N \end{bmatrix}.$$

From its first row, we can factor out a β_1 ; from its second, a β_2 . Continuing, gives

$$\text{Det}(S) = p \cdot \text{Det}(V_{(\beta_1, \dots, \beta_N)}),$$

where $p := \beta_1 \cdot \beta_2 \cdots \beta_N$. By induction, then,

$$\begin{aligned} 3ii: \quad \text{Det}(S) &= p \cdot G((\beta_1, \dots, \beta_N)) \\ &\stackrel{\text{note}}{=} G((0, \beta_1, \dots, \beta_N)). \end{aligned}$$

Equality of polys. There is no true loss-of-generality in assuming that none of β_1, \dots, β_N is zero. (Left to the Reader.) Define two polys

$$\begin{aligned} f(x) &:= \text{Det}(V_{(x, \beta_1, \dots, \beta_N)}) ; \\ g(x) &:= G((x, \beta_1, \dots, \beta_N)). \end{aligned}$$

Our goal is $f(\beta_0) \stackrel{?}{=} g(\beta_0)$. Since f, g each have $\text{degree} \leq N$ [exercise!], we need but establish equality $f(x) = g(x)$, for x at $N+1$ distinct places. (This implication obtains, since we work over an integral domain). We will use the values $x = 0, \beta_1, \dots, \beta_N$.

Certainly $g(\beta_1) = 0$, by (1). And $f(\beta_1)$ is zero, since the corr. Vandermonde matrix has duplicated rows. Ditto β_2, \dots, β_N .

Applying cofactors along the top row of $V_{(0, \beta_1, \dots, \beta_N)}$ gives $\text{Det}(V_{(0, \beta_1, \dots, \beta_N)}) = \text{Det}(S)$. I.e., $f(0) = \text{Det}(S)$. Thus

$$f(0) = G((0, \beta_1, \dots, \beta_N)) \stackrel{\text{by defn}}{=} g(0). \quad \diamond$$

Discriminant. Here is an application. Define

$$h(x) := \prod_{j=0}^N [x - \beta_j];$$

this is the above $g(x)$ up to multiplying by ± 1 . Counted with multiplicity, the roots of h are β_0, \dots, β_N .

Set $\mathbf{c} := (\beta_0, \dots, \beta_N)$. Courtesy (1) & (3i) we have

$$\begin{aligned} \text{Discr}(h) &\stackrel{\text{def}}{=} G(\mathbf{c})^2 = \text{Det}(\mathbf{V}_c)^2 \\ 4: &\stackrel{\text{note}}{=} \text{Det}(\mathbf{V}_c^t \cdot \mathbf{V}_c). \end{aligned}$$

Here, \mathbf{V}_c^t is the transpose of \mathbf{V}_c . For $k = 0, 1, 2, \dots$, define the sum

$$\mu^{(k)} := \mu_{\mathbf{c}}^{(k)} := \sum_{j \in [1..N]} [\beta_j]^k.$$

For illustrative purposes, suppose $N = 25$ and write $\mathbf{c} = (a, b, \dots, z)$. Then

$$\begin{aligned} 4': \quad \mathbf{V}_c^t \cdot \mathbf{V}_c &= \begin{bmatrix} 1 & 1 & \dots & 1 \\ a & b & \dots & z \\ a^2 & b^2 & \dots & z^2 \\ \vdots & \vdots & \ddots & \vdots \\ a^N & b^N & \dots & z^N \end{bmatrix} \cdot \begin{bmatrix} 1 & a & a^2 & \dots & a^N \\ 1 & b & b^2 & \dots & b^N \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & z & z^2 & \dots & z^N \end{bmatrix} \\ &= \begin{bmatrix} \mu^{(0)} & \mu^{(1)} & \mu^{(2)} & \dots & \mu^{(N)} \\ \mu^{(1)} & \mu^{(2)} & \mu^{(3)} & \dots & \mu^{(N+1)} \\ \mu^{(2)} & \mu^{(3)} & \mu^{(4)} & \dots & \mu^{(N+2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mu^{(N)} & \mu^{(N+1)} & \mu^{(N+2)} & \dots & \mu^{(N+N)} \end{bmatrix}. \end{aligned}$$

Observe **Unfinished**: as of 26Aug2023 I don't know where I meant to take this. \square

Centralizer

Consider field \mathbb{F} , ring $\mathcal{R} := \text{MAT}_{N \times N}(\mathbb{F})$ and group $\mathcal{G} := \text{GL}_N(\mathbb{F})$. Use \mathbf{I} for the identity matrix. Let $\Delta_{i,j}$ be the all-zero matrix *except* for a 1 in position (i,j) .

5: Lemma. Suppose matrix $\mathbf{M} \in \mathcal{R}$ commutes with every member of \mathcal{G} . Then \mathbf{M} is a multiple of \mathbf{I} . \diamond

Proof. WLOG $N \geq 2$. Write \mathbf{M} in rows and cols:

$$\dagger: \quad \mathbf{M} =: \begin{bmatrix} \rightarrow & \mathbf{r}_1 & \rightarrow \\ & \vdots & \\ \rightarrow & \mathbf{r}_N & \rightarrow \end{bmatrix} =: \begin{bmatrix} \downarrow & \downarrow & \dots & \downarrow \\ \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_N \\ \downarrow & \downarrow & & \downarrow \end{bmatrix}.$$

Let α be the $(1,1)$ -entry of \mathbf{M} . ISTShow that each \mathbf{r}_j equals $(0, \dots, 0, \alpha, 0, \dots, 0)$. I.e that $\mathbf{r}_j = \alpha \mathbf{e}_j$.

Assumption, "M $\leq \Delta$ ". We show $\mathbf{r}_3 = \alpha \mathbf{e}_3$. We first assume that \mathbf{M} commutes with $\Delta := \Delta_{1,3}$, even though Δ is not invertible. The 1st-row of product $\Delta \mathbf{M}$ is \mathbf{r}_3 ; all other rows are zero. The 3rd-column of $\mathbf{M} \Delta$ is \mathbf{c}_1 ; all other columns are zero. Since $\Delta \mathbf{M} \stackrel{\text{must}}{=} \mathbf{M} \Delta$, this 1st-row and 3rd-column must be all-zero except for a value, call it β , at their common intersection. So $\mathbf{r}_3 = \beta \mathbf{e}_3$ and (viewed as "vertical" tuples) \mathbf{c}_1 equals $\beta \mathbf{e}_1$. The equality $\mathbf{c}_1 = \beta \mathbf{e}_1$ means that β equals α .

Back to Reality. Fix $a \neq 1$. So $\mathbf{I} + \Delta$ is invertible, where $\Delta := \Delta_{1,j}$.

Thus $[\mathbf{I} + \Delta] \mathbf{M} = \mathbf{M} [\mathbf{I} + \Delta]$ and so $\Delta \mathbf{M} = \mathbf{M} \Delta$. As above, then, $\mathbf{r}_j = \alpha \mathbf{e}_j$. So we just need to show that the only non-zero entry in the first row, \mathbf{r}_1 , is its first entry. But the above argument applied to $\Delta := \Delta_{2,1}$ implies that. \spadesuit

Let $\text{Rent}(U)$ for the Ring centralizer of \mathbf{M} ; the set of $\mathbf{A} \in \mathcal{R}$ which commute with \mathbf{U} . Evidently $\text{Rent}(U)$ is a subring (indeed, a sub- \mathbb{F} -algebra) of \mathcal{R} . And it clearly includes the \mathbb{F} -algebra of polynomials in \mathbf{U} .

Ques. Q1. For what \mathbf{U} is $\text{Rent}(\mathbf{U})$ just the polynomials? For the identity matrix, $\text{Rent}(\mathbf{I})$ is \mathcal{R} .

Now suppose \mathbb{F} has a topology under which addition and multiplication are cts. This puts a topology on $\text{MAT}_{N \times N}(\mathbb{F})$ (component-wise) under which matrix-mult is cts. Thus $\text{Rent}(\mathbf{U})$ is a closed set. Under what conditions is the closure of $\text{Poly}(\mathbf{U})$? And when is this closure properly bigger than $\text{Poly}(\mathbf{U})$? \square

Remark. Over field \mathbb{Z}_2 , notice that matrix $\mathbf{U} := \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ is not only non-invertible, but worse: It cannot be made invertible even by adding a multiple of \mathbf{I} . \square

Indexed

Consider a (finite, usually) set S , and another set R (which is usually cring), call a map $\mathbf{A}: [S \times S] \rightarrow R$ a "(square) matrix *indexed by S*".

Kronecker product

Consider two square matrices:

$$\mathbf{A} = (\alpha_{\ell,\ell'}) \text{ indexed by } [0..L];$$

$$\mathbf{B} = (\beta_{m,m'}) \text{ indexed by } [0..M].$$

The **Kronecker product** $\mathbf{K} := \text{Kron}(\mathbf{A}, \mathbf{B})$ is indexed by $[0..L] \times [0..M]$. Its entry at “row” (ℓ, m) and “column” (ℓ', m') is the product $\alpha_{\ell,\ell'} \cdot \beta_{m,m'}$.

6: Theorem. *With notation from above,*

$$\text{Det}(\mathbf{K}) = \text{Det}(\mathbf{A})^M \cdot \text{Det}(\mathbf{B})^L \quad \diamond$$

Proof. Apply elementary row operations (ER-Ops) to \mathbf{A} , and see that this corresponds to ER-Ops on \mathbf{K} . Now do the same for \mathbf{B} and \mathbf{K} . Let $\widehat{\mathbf{A}}, \widehat{\mathbf{B}}, \widehat{\mathbf{K}}$ be the RREF (reduced row-echelon form) of $\mathbf{A}, \mathbf{B}, \mathbf{K}$, respectively. I think we will get that

$$\widehat{\mathbf{K}} = \text{Kron}(\widehat{\mathbf{A}}, \widehat{\mathbf{B}}). \quad \diamond$$

Uniqueness of RREF

09Oct2010: This proof is cryptic; improve it.

Below, \mathbf{B} and $\widehat{\mathbf{B}}$ are $K \times N$ matrices in *reduced row-echelon form*. Use \mathbf{r}_i and $\widehat{\mathbf{r}}_i$ to denote their i^{th} rows.

7: RREF-is-Unique Thm. *If a $K \times N$ matrix is row-equivalent to both $\widehat{\mathbf{B}}$ and \mathbf{B} , then $\widehat{\mathbf{B}} = \mathbf{B}$.* \diamond

Proof. Row-equivalence preserves row-span, and so the thm will follow from Lemma 8. \diamond

8: Lemma. *Suppose that $\widehat{\mathbf{B}} \neq \mathbf{B}$. Let δ be the smallest row-index for which $\widehat{\mathbf{r}}_\delta \neq \mathbf{r}_\delta$. Then either*

$$\begin{aligned} *: \quad & \widehat{\mathbf{r}}_\delta \notin \text{RowSpn}(\mathbf{B}) \quad \text{or} \\ \widehat{*}: \quad & \mathbf{r}_\delta \notin \text{RowSpn}(\widehat{\mathbf{B}}). \end{aligned} \quad \diamond$$

Proof. WLOG the first-rows disagree, i.e. $\delta = 1$. WLOG $\widehat{\mathbf{B}}(1,1)$ and $\mathbf{B}(1,1)$ are pivot-ptns. (Exercise.)

The difference row-vector

$$\mathbf{d} := \widehat{\mathbf{r}}_1 - \mathbf{r}_1$$

is not all-zero. There is no true loss of generality in assuming that column-5 is the first non-zero entry in \mathbf{d} . So

$$\mathbf{d} = [0 \ 0 \ 0 \ 0 \ \widehat{x} - x \ ? \ ? \ ? \ ?]$$

where $x := \mathbf{r}_1(5)$. And $\widehat{x} \neq x$.

Suppose that $(*)$ is false. Then there are row-indices $2 \geq i_1 > i_2 > i_3 > \dots$ and *non-zero* scalars α_{i_k} so that

$$**: \quad \mathbf{d} = \alpha_{i_1} \mathbf{r}_{i_1} + \alpha_{i_2} \mathbf{r}_{i_2} + \dots$$

Moreover, this sum is *not empty*, since $\mathbf{d} \neq \mathbf{0}$.

All the rows of $(**)$ must have their pivot-cols at ≥ 5 , since cols 1, ..., 4 of \mathbf{d} are 0.

Thus the pivot-col of \mathbf{r}_{i_1} *must* be 5, since $\mathbf{d}(5)$ is not zero. But this means that $\widehat{x} = 0$.

Doing the same for the hatted rows. FTSOC, suppose that also $(\widehat{*})$ fails. Then the same reasoning shows that there are row-indices $2 \geq j_1 > j_2 > j_3 > \dots$ and non-zero scalars β_{j_k} so that

$$\widehat{**}: \quad \mathbf{d} = \beta_{j_1} \widehat{\mathbf{r}}_{j_1} + \beta_{j_2} \widehat{\mathbf{r}}_{j_2} + \dots$$

As before, the pivot-col of $\widehat{\mathbf{r}}_{j_1}$ *must* be 5. Hence $\widehat{x} = 0$. And this $\widehat{\times}$ s that $\widehat{x} \neq x$. \diamond

Ques. Q1. If $\widehat{\mathbf{B}}$ and \mathbf{B} have the same row-nullspace, must they be equal? \square