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Abstract: Centralizers. Determinant facts (not done).

Vandermonde Matrix

(This works over every integral domain. And we can freely
pass to its field-of-quotients.) An [N+1]-tuple
b := (((β0, β1, . . . , βN))) determines a product

G(b) :=
∏

0≤i<j≤N
[βj − βi]1:

and the [N+1]× [N+1] Vandermonde matrix

Vb :=


1 β0 β 2

0 . . . βN0
1 β1 β 2

1 . . . βN1
1 β2 β 2

2 . . . βN2
...

...
...

...
1 βN β 2

N . . . βNN

 .2:

3: Vandermonde Lemma. For all tuples b,

Det(Vb) = G(b) .3i: ♦

Proof. We induct on N . For N=0, remark that

Det(
[
1
]
) = 1 = Empty product = G

(
(((β0)))

)
.

Fix an N ≥ 1. Consider the N×N submatrix

S :=


β1 β 2

1 . . . βN1
β2 β 2

2 . . . βN2
...

...
...

βN β 2
N . . . βNN

 .

From its first row, we can factor out a β1; from its
second, a β2. Continuing, gives

Det(S) = p ·Det(V(((β1,...,βN)))) ,

where
�� ��p := β1 · β2 · · ·βN . By induction, then,

Det(S) = p ·G
(
(((β1, . . . , βN)))

)
note
=== G

(
(((0, β1, . . . , βN)))

)
.

3ii:

Equality of polys. There is no true loss-of-gen-
erality in assuming that none of β1, . . . , βN is zero.
(Left to the Reader.) Define two polys

f(x) := Det(V(((x,β1,...,βN)))) ;

g(x) := G
(
(((x, β1, . . . , βN)))

)
.

Our goal is f(β0)
?
=g(β0). Since f, g each have

degree≤N [exercise!], we need but establish equality
f(x)=g(x), for x at N+1 distinct places. (This impli-
cation obtains, since we work over an integral domain). We
will use the values x = 0, β1, . . . , βN .

Certainly g(β1) = 0, by (1). And f(β1) is zero, since
the corr. Vandermonde matrix has duplicated rows.
Ditto β2, . . . , βN .

Applying cofactors along the top row of V(((0,β1,...,βN)))

gives Det(V(((0,β1,...,βN)))) = Det(S). I.e, f(0) = Det(S).
Thus

f(0) = G
(
(((0, β1, . . . , βN)))

) by defn
====== g(0) . �
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Discriminant. Here is an application. Define

h(x) :=
∏N

j=0
[x− βj ] ;

this is the above g(x) up to multiplying by ±1.
Counted with multiplicity, the roots of h are
β0, . . . , βN .

Set c := (((β0, . . . , βN))). Courtesy (1)& (3i) we have

Discr(h)
def
== G(c)2 = Det(Vc)2

note
=== Det(Vt

c · Vc) .
4:

Here, Vt
c is the transpose of Vc. For k = 0, 1, 2, . . . ,

define the sum

µ(k) := µ(k)c :=
∑

j∈[1 .. N ]

[βj ]
k .

For illustrative purposes, suppose N = 25 and write
c = (((a, b, . . . , z))). Then

Vt
c · Vc =

 1 1 ... 1
a b ... z
a2 b2 ... z2
...
aN bN ... zN

 ·
 1 a a2 ... aN

1 b b2 ... bN

...
...
...

...
1 z z2 ... zN



=

 µ(0) µ(1) µ(2) ... µ(N)

µ(1) µ(2) µ(3) ... µ(N+1)

µ(2) µ(3) µ(4) ... µ(N+2)

...
µ(N) µ(N+1) µ(N+2) ... µ(N+N)

 .
4′:

Observe Unfinished: as of 26Aug2023 I don’t know
where I meant to take this. �

Centralizer

Consider field F, ring R := MatN×N (F) and group
G := GLN (F). Use I for the identity matrix. Let ∆i,j

be the all-zero matrix except for a 1 in position (((i, j))).

5: Lemma. Suppose matrix M ∈ R commutes with
every member of G. Then M is a multiple of I. ♦

Proof. WLOG N≥2. Write M in rows and cols:

M =:

[→ r1 →
...

→ rN →

]
=:

[
↓ ↓ ↓
c1 c2 ... cN
↓ ↓ ↓

]
.†:

Let α be the (((1, 1)))-entry of M. ISTShow that each rj
equals (((0, j−1. . . , 0, α, 0, . . . , 0))). I.e that rj = αej.

Assumption, “M � ∆”. We show r3 = αe3.
We first assume that M commutes with ∆ := ∆1,3,
even though ∆ is not invertible. The 1st-row of prod-
uct ∆M is r3; all other rows are zero. The 3rd-
column of M∆ is c1; all other columns are zero. Since
∆M

must
==== M∆, this 1st-row and 3rd-column must be

all-zero except for a value, call it β, at their common
intersection. So r3 = βe3 and (viewed as “vertical” tu-
ples) c1 equals βe1. The equality c1=βe1 means that
β equals α.

Back to Reality. Fix a j 6= 1. So I+ ∆ is invert-
ible, where ∆ := ∆1,j.

Thus [I + ∆]M = M[I + ∆] and so ∆M = M∆. As
above, then, rj = αej. So we just need to show that
the only non-zero entry in the first row, r1, is its first
entry. But the above argument applied to ∆ := ∆2,1

implies that. �

Let Rent(U) for the Ring centralizer of M; the set
of A ∈ R which commute with U. Evidently Rent(U)
is a subring (indeed, a sub-F-algebra) of R. And it clearly
includes the F-algebra of polymonials in U.

Ques.Q1.For what U is Rent(U) just the polynomials?
For the identity matrix, Rent(I) is R.

Now suppose F has a topology under which addi-
tion and multiplication are cts. This puts a topology
on MatN×N (F) (component-wise) under which matrix-
mult is cts. Thus Rent(U) is a closed set. Under what
conditions is the closure of Poly(U)? And when is this
closure properly bigger than Poly(U)? �

Remark.Over field Z2, notice that matrix U := [ 1 1
0 0 ] is

not only non-invertible, but worse: It cannot be made
invertible even by adding a multiple of I. �

Indexed

Consider a (finite, usually) set S, and another set R
(which is usually cring), call a map A: [S×S]→R a
“(square) matrix indexed by S ” .
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Kronecker product
Consider two square matrices:

A = (((α`,`′))) indexed by [0 .. L) ;

B = (((βm,m′))) indexed by [0 ..M) .

The Kronecker product K := Kron(A,B) is indexed
by [0 .. L) × [0 ..M). Its entry at “row” (((`,m))) and
“column” (((`′,m′))) is the product α`,`′ · βm,m′ .

6: Theorem. With notation from above,

Det(K) = Det(A)M ·Det(B)L ♦

Proof. Apply elementary row operations (ER-Ops)
to A, and see that this corresponds to ER-Ops on K.
Now do the same for B and K. Let Â, B̂, K̂ be the
RREF (reduced row-echelon form) of A,B,K, respectively.
I think we will get that

K̂ = Kron(Â, B̂) . �

Uniqueness of RREF

09Oct2010: This proof is cryptic; improve it.
Below, B and B̂ are K×N matrices in reduced row-

echelon form. Use ri and r̂i to denote their ith rows.

7: RREF-is-Unique Thm. If a K×N matrix is row-
equivalent to both B̂ and B, then B̂ = B. ♦

Proof. Row-equivalence preserves row-span, and so
the thm will follow from Lemma 8. �

8: Lemma. Suppose that B̂ 6= B. Let δ be the smallest
row-index for which r̂δ 6= rδ. Then either

r̂δ 6∈ RowSpn(B) or∗:
rδ 6∈ RowSpn(B̂) .∗̂: ♦

Proof. WLOG the first-rows disagree, i.e δ = 1.
WLOG B̂(1, 1) and B(1, 1) are pivot-ptns. (Exercise.)

The difference row-vector

d := r̂1 − r1

is not all-zero. There is no true loss of generality in as-
suming that column-5 is the first non-zero entry in d.
So

d = [ 0 0 0 0 x̂−x ? ? ... ? ]

where x := r1(5). And x̂ 6= x.
Suppose that (∗) is false. Then there are row-

indices 2 ≥ i1 > i2 > i3 > . . . and non-zero scalars αik

so that

d = αi1ri1 + αi2ri2 + . . . .∗∗:

Moreover, this sum is not empty, since d 6= 0.
All the rows of (∗∗) must have their pivot-cols

at ≥5, since cols 1, . . . , 4 of d are 0.
Thus the pivot-col of ri1 must be 5, since d(5) is

not zero. But this means that
�� ��x = 0 .

Doing the same for the hatted rows. FTSOC,
suppose that also (∗̂) fails. Then the same reasoning
shows that there are row-indices 2 ≥ j1 > j2 > j3 >
. . . and non-zero scalars βjk so that

d = βj1 r̂j1 + βj2 r̂j2 + . . . .∗̂∗:

As before, the pivot-col of r̂j1 must be 5. Hence�� ��x̂ = 0 . And this ### s that x̂ 6=x. �

Ques.Q1. If B̂ and B have the same row-nullspace,
must they be equal? �
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