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Overview. We extend some theorems about the
finite fields.

Standing notation. Use F = F, := GI'(q) for the
finite field of cardinality q = p’, where p is prime and
L € Zy. SoF, =7, Rather than q, use
and, extending our Euler-phi-fnc notation, define the
units-group

O = FN {0} and @ = |Pg| = F—1.

More generally, consider a commutative ring I': We
will sometimes use 0,1 for the zero and one of T, to
emphasize that they are elements of the ring. Use &
for the units-group,

{ael |3l st aBf=1}.

Say “F is odd” to mean |F| is odd, i.e the character-

istic of the field, Char(F) 22 p, is odd. Finally, when
F is odd, define [H for Half|

He = 1. |&¢| = Lz L
Legendre symbol. A quadratic-residue, an F-
QR, is an o € ®f for which Jo € F such that ¢ = a.
[Necessarily, o € @
A non-quadratic—residue, an F-NQR, is a unit
for which no sqroot exists.

Define the Legendre-symbol (4F):F—>{71, 0,+1} by
(%) =0 and, for a a unit: (%) =+1 if o € QR, else
(%) = -1 if @ € NQR. O

1: Gen Wilson's Thm. Below, F is a finite-field, and T’
is a commutative ring with finite units-group.

a: Let S = {0 € T'| 0% = 1}, the sqroots of 1. Then
[1(®r) =TI(S).
note

b: For p = 2: Product [[(®Pg) =1 =-1, in F.

c: For p an odd prime: Product [[(®g) =-1. O

Webpage http://people.clas.ufl.edu/squash/

Pfof (a). Define h:®rO by h(x) := 1/x. Since h is
an involution, orbits have size 2 or 1 |are h-fixed-points].
The elements of a size-2 orbit multiply to 1, so we can
discard them. ¢

Pf of (b,c). Polynomial 2% — 1 factors over F as
[ — 1][z + 1], and this factorization is unique, since F
is a field. Hence the only h-fixed-pts are +1.

When p = 2, then ~71=1, whence [[(®F) = 1. For
p oddprime, [[(®g) =[[({-1,1}) =-1. ¢

2: Legendre-Symbol Thm (LSThm).

GF(2F) is a QR.
Fix an odd(-card.) field F. Then for all x,a,3 € F:

TR
) s

where (-), is the symmetric mod-4 residue. O

Every unit in

Proof. The units group of F := GF(2%) has odd order
D = 2% — 1. Recall that the mult-group of a field is
cyclic, so squaring on ®¢ is the doubling-map on an
odd-cycle, which is surjective.

Establishing (i). Fix an odd F, set ® := ®f and
H := 1[|F| — 1] Certainly (E) =0=0".

Fix a unit « and define g:®O by g(z) := a/x, which
is an involution. The g-fixed-pts are the sqroots of «.

ECASE: o€ NQR] Thus g pairs all elements of ®.
Hence

aH — H(‘P) Wilson’s -7 note (%) '

Take o € F so that 62 = .. Note

+o are distinct [F is odd|, so they are the only [since F
is a field| sqroots of a. Thus off =1 = [[(® \ {£0}).
Hence

y Wilson’s H(CI)) — aH_l'*O"O' — ,1.QH'

So afl = 1 Igg(%)

Finally, both (ii) and (iii) follow from (i). ¢
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Relations among QRs. We start by summing Leg-
endre-symbols along a quadratic polynomial.

3: Quad-Legendre-sum Thm (G. Andrews, P.130, Thm 10-3).

On an odd F, let g(z) :
U,V € F. Define the sum

[ — Ul[z — V], where

IfU=V then8§=F —1. IfU#V then 8§ =-1. ¢

Proof. Sety :=x—U and D .=V —U € F. This
y[y—D] yly—D
CoV makes 8§ =3, (T) =40 ( -

(é) = 0. Use y for the reciprocal of y. Then

(y y — D]) <?72> (y- [y — D]) (1 — Dy
F - \F F - F

Setting z := g, then, § = Y () = [Z (ﬂ)} -1
z#£0 F z F

), since

N——

since (é) =1.

So D =0, hence § = F — 1.

Case: U # V] Now D # 0. As z ranges over F,
so does Dz, hence so does 1 — Dz. Our F is odd, so
3 (=) =0 Thus § =0-1=-1. ¢

Fix an odd F and a D € F. Define

5p ::z(?_D).

x F
When D # 0 then 8p = -1. Trivially, S = F — 1. O
Pf. Fix D # 0 and define
Q = Z and N = Z

(1 — w> <1 — z>
weEQR F 2eNQR F

4a: Lemma.

For each x € ®, let T denote its reciprocal.

Note 8p — (%) equals

z#0 F z#0 F y#0 F

=) -2 -5
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(Case: D€ QR) Then (=) = (=) = (F),. As

y varies, product Dy? hits each QR twice. Conse-
quently, 8p — (F), = 2Q. We see all QRs D yield
the same §p. Calling the common value Sqr, we have

Sop — (F), = 20.

[CASE: De NQR} Now (%) = ~(F),. Asy varies,
product Dy? visits each NQR twice. Calling the com-
mon value Sngr, we have that

SNQR—F<JT>4 = 2N .

Adding, gives that

l1—=z
z#0 F
But (F) + X220 (T) =2 (T) = 0. Thus
de: Sar +Snar = 2.

Last step. Over F, note 22 — 1 = [z — 1][x + 1],
and -1 # 1, since F is odd. So Quad-Legendre-sum
Thm (3) informs us that -1 = 8§ = Sqr. Now (4c)
assures that Sngr = -1. ¢

4d: Corollary. Using the Q and N from above,

1—w 1-z
Y (=) =3[P =1, ¥ (=) =5 [H{F)y— 10
weQR zENQR
Definition. Recall that the discriminant of poly-

nomial g(z) = Az? + Bx + C with A # 0, is
Discr(g) := B? — 4AC. O

4e: General Quad-LS Thm. Fix an odd F and consider
polynomial

g(x) = 2?4+ Bz + C, with B,C € F,
9(z)

and sum 8, = Z (—) .
zeF F
In the algebraic closure F, factor g(x) as

g(x) = [x=Ullx = V], withU,V € F.
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Then

1 S — F—1 ;ifU=1V,ieDiscr(g) =0
Y -1 if U # V, ieDiscr(g) #0)

So a general g(z) == Az® + Bz + C |where A,B,C € F
with A # 0| thus has

A B
4! 8, = []':4— 1](F) ; if Discr(g) =0 o
(=) . if Discr(g) # 0

Pf of (4¢"). Since F is odd, value % is well-defined,

and D = [2]2— C € F. Complete the square to write
— B12
gly) = [y+35]" - D.

Define h(z) = g(z — &) ote 22 — D.

Our h is a translate of g, so 8; = 8;. And g has a
double-root [in F] IFF h does IFF D = 0. [Thus any
‘F-double-root of g already lies in F.| The improvement is
that (4a) applies to h. Happily, it yields (4e’).

Finally, note 4D = B% — 4C = Discr(g). ¢

Remark. George Andrews’ text, in Thm 10-1 on P.128,
states the following theorem with F = Z, and I" = 1.
His proof works in the following slightly more general
context. (]

5: Gap-QR Thm. Fix an odd F, and a non-zero “gap”
I" € F. Define the set

C = {xEF‘Botb l‘,:E—FEQR}.

Let N :=|C|. Then

5a: N = H}'—S—(E)—(%)].

Write F as 4T — 1 or 4T 4+ 1 as F is 4NEG or 4Pos.
Then we can restate (ba) as

5b:  When F is4Nec: N = T —1.
5c: When Fis4Pos: N = T —1[1+ (=)]. O
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Pf. Note 0,1 ¢ €. Define (g := F ~ {0,T}}. Then

AN = Z[H(f)][u(r_r)},

TE€] F F

since, for each x € g, both (é) and (?) lie in {+1}.
As |J| = F — 2, we get that 4N equals

o [Fo2+ @+ =)+ Y B (=)

z€] x€d z€]
—— N—_——
U Vv 8

Evidently (=) + U = Y, (£) = 0, since F is odd.
Consequently U = *(E)
.. -T x -T
Similarly, (=) + V' = 3,20 (=) = 0; 50 V = ~(=).

Then 8

equals Y, (ﬁz)) Since g has distinct roots, both in

F, the Quad-Legendre-sum Thm (3) says that 8 =-1.
Plugging the values for U, V8 into () will produce

the claimed (5a). ¢

Computing 8. Let g(z) = =[x —T].
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