

Generalizing Wilson's and Legendre-symbol thm to finite fields: NumThy

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 1 March, 2023 (at 12:15)

Overview. We extend some theorems about the finite fields.

Standing notation. Use $\mathbb{F} = \mathbb{F}_q := \text{GF}(q)$ for the finite field of cardinality $q = p^L$, where p is prime and $L \in \mathbb{Z}_+$. So $\mathbb{F}_p = \mathbb{Z}_p$. Rather than q , use $\mathcal{F} := |\mathbb{F}|$ and, extending our Euler-phi-fnc notation, define the units-group

$$\Phi_{\mathbb{F}} := \mathbb{F} \setminus \{0\} \quad \text{and} \quad \varphi_{\mathbb{F}} := |\Phi_{\mathbb{F}}| = \mathcal{F} - 1.$$

More generally, consider a commutative ring Γ : We will *sometimes* use $0, 1$ for the *zero* and *one* of Γ , to emphasize that they are elements of the ring. Use Φ_{Γ} for the units-group,

$$\{\alpha \in \Gamma \mid \exists \beta \in \Gamma \text{ s.t. } \alpha\beta = 1\}.$$

Say “ \mathbb{F} is odd” to mean $|\mathbb{F}|$ is odd, i.e the characteristic of the field, $\text{Char}(\mathbb{F}) \stackrel{\text{note}}{=} p$, is odd. Finally, when \mathbb{F} is odd, define [H for Half]

$$H_{\mathbb{F}} := \frac{1}{2} \cdot |\Phi_{\mathbb{F}}| = \frac{\mathcal{F} - 1}{2}.$$

Legendre symbol. A *quadratic-residue*, an \mathbb{F} -QR, is an $\alpha \in \Phi_{\mathbb{F}}$ for which $\exists \sigma \in \mathbb{F}$ such that $\sigma^2 = \alpha$. [Necessarily, $\sigma \in \Phi_{\mathbb{F}}$.]

A *non-quadratic-residue*, an \mathbb{F} -NQR, is a unit α for which *no* sqroot exists.

Define the **Legendre-symbol** $(\frac{\cdot}{\mathbb{F}}) : \mathbb{F} \rightarrow \{-1, 0, +1\}$ by $(\frac{0}{\mathbb{F}}) := 0$ and, for α a unit: $(\frac{\alpha}{\mathbb{F}}) := +1$ if $\alpha \in \text{QR}$, else $(\frac{\alpha}{\mathbb{F}}) := -1$ if $\alpha \in \text{NQR}$. \square

1: Gen Wilson's Thm. Below, \mathbb{F} is a finite-field, and Γ is a commutative ring with finite units-group.

a: Let $S := \{\sigma \in \Gamma \mid \sigma^2 = 1\}$, the sqroots of 1. Then $\prod(\Phi_{\Gamma}) = \prod(S)$.

b: For $p = 2$: Product $\prod(\Phi_{\mathbb{F}}) = 1 \stackrel{\text{note}}{=} -1$, in \mathbb{F} .

c: For p an odd prime: Product $\prod(\Phi_{\mathbb{F}}) = -1$. \diamond

Pf of (a). Define $h : \Phi_{\Gamma} \circlearrowright$ by $h(x) := 1/x$. Since h is an involution, orbits have size 2 or 1 [are h -fixed-points]. The elements of a size-2 orbit multiply to 1, so we can discard them. \diamond

Pf of (b,c). Polynomial $x^2 - 1$ factors over \mathbb{F} as $[x - 1][x + 1]$, and this factorization is unique, since \mathbb{F} is a field. Hence the only h -fixed-pts are ± 1 .

When $p = 2$, then $-1 = 1$, whence $\prod(\Phi_{\mathbb{F}}) = 1$. For p oddprime, $\prod(\Phi_{\mathbb{F}}) = \prod(\{-1, 1\}) = -1$. \diamond

2: Legendre-Symbol Thm (LSThm). Every unit in $\text{GF}(2^L)$ is a QR.

Fix an odd(-card.) field \mathbb{F} . Then for all $x, \alpha, \beta \in \mathbb{F}$:

i: $\begin{pmatrix} x \\ - \\ \mathbb{F} \end{pmatrix} = x^{H_{\mathbb{F}}}.$

ii: $\begin{pmatrix} \alpha \cdot \beta \\ - \\ \mathbb{F} \end{pmatrix} = \begin{pmatrix} \alpha \\ - \\ \mathbb{F} \end{pmatrix} \begin{pmatrix} \beta \\ - \\ \mathbb{F} \end{pmatrix}$. Also, $(\frac{-1}{\mathbb{F}}) = \langle \mathcal{F} \rangle_4$,

where $\langle \cdot \rangle_4$ is the symmetric mod-4 residue. \diamond

Proof. The units group of $\mathbb{F} := \text{GF}(2^L)$ has odd order $D := 2^L - 1$. Recall that the mult-group of a field is cyclic, so squaring on $\Phi_{\mathbb{F}}$ is the doubling-map on an odd-cycle, which is surjective.

Establishing (i). Fix an odd \mathbb{F} , set $\Phi := \Phi_{\mathbb{F}}$ and $H := \frac{1}{2} [|\mathbb{F}| - 1]$. Certainly $\begin{pmatrix} 0 \\ - \\ \mathbb{F} \end{pmatrix} = 0 = 0^H$.

Fix a unit α and define $g : \Phi \circlearrowright$ by $g(x) := \alpha/x$, which is an involution. The g -fixed-pts are the sqroots of α .

CASE: $\alpha \in \text{NQR}$ Thus g pairs all elements of Φ . Hence $\alpha^H = \prod(\Phi) \stackrel{\text{Wilson's}}{=} -1 \stackrel{\text{note}}{=} (\frac{\alpha}{\mathbb{F}})$.

CASE: $\alpha \in \text{QR}$ Take $\sigma \in \mathbb{F}$ so that $\sigma^2 = \alpha$. Note $\pm\sigma$ are distinct [\mathbb{F} is odd], so they are the *only* [since \mathbb{F} is a field] sqroots of α . Thus $\alpha^{H-1} = \prod(\Phi \setminus \{\pm\sigma\})$. Hence

$$-1 \stackrel{\text{Wilson's}}{=} \prod(\Phi) = \alpha^{H-1} \cdot -\sigma \cdot \sigma = -1 \cdot \alpha^H.$$

So $\alpha^H = 1 \stackrel{\text{note}}{=} (\frac{\alpha}{\mathbb{F}})$.

Finally, both (ii) and (iii) follow from (i). \diamond

Relations among QRs. We start by summing Legendre-symbols along a quadratic polynomial.

3: Quad-Legendre-sum Thm (G. Andrews, P.130, Thm 10-3).

On an odd F , let $g(x) := [x - U][x - V]$, where $U, V \in F$. Define the sum

$$S := \sum_{x \in F} \left(\frac{g(x)}{F} \right).$$

If $U = V$ then $S = \mathcal{F} - 1$. If $U \neq V$ then $S = -1$. \diamond

Proof. Set $y := x - U$ and $D := V - U \in F$. This CoV makes $S = \sum_y \left(\frac{y \cdot [y - D]}{F} \right) = \sum_{y \neq 0} \left(\frac{y \cdot [y - D]}{F} \right)$, since $\left(\frac{0}{F} \right) = 0$. Use \tilde{y} for the reciprocal of y . Then

$$\left(\frac{y \cdot [y - D]}{F} \right) = \left(\frac{\tilde{y}^2}{F} \right) \cdot \left(\frac{y \cdot [y - D]}{F} \right) = \left(\frac{1 - Dy}{F} \right).$$

Setting $z := \tilde{y}$, then, $S = \sum_{z \neq 0} \left(\frac{1 - Dz}{F} \right) = \left[\sum_z \left(\frac{1 - Dz}{F} \right) \right] - 1$, since $\left(\frac{1}{F} \right) = 1$.

CASE: $U = V$ So $D = 0$, hence $S = \mathcal{F} - 1$.

CASE: $U \neq V$ Now $D \neq 0$. As z ranges over F , so does Dz , hence so does $1 - Dz$. Our F is odd, so $\sum_w \left(\frac{w}{F} \right) = 0$. Thus $S = 0 - 1 = -1$. \diamond

4a: Lemma. Fix an odd F and a $D \in F$. Define

$$S_D := \sum_x \left(\frac{x^2 - D}{F} \right).$$

When $D \neq 0$ then $S_D = -1$. Trivially, $S_0 = \mathcal{F} - 1$. \diamond

Pf. Fix $D \neq 0$ and define

$$\mathcal{Q} := \sum_{w \in QR} \left(\frac{1 - w}{F} \right) \quad \text{and} \quad \mathcal{N} := \sum_{z \in NQR} \left(\frac{1 - z}{F} \right).$$

For each $x \in \Phi$, let \tilde{x} denote its reciprocal.

Note $S_D - \left(\frac{-D}{F} \right)$ equals

$$\sum_{x \neq 0} \left(\frac{x^2 - D}{F} \right) = \sum_{x \neq 0} \left(\frac{1 - D\tilde{x}^2}{F} \right) = \sum_{y \neq 0} \left(\frac{1 - Dy^2}{F} \right).$$

CASE: $D \in QR$ Then $\left(\frac{-D}{F} \right) = \left(\frac{-1}{F} \right) = \langle \mathcal{F} \rangle_4$. As y varies, product Dy^2 hits each QR twice. Consequently, $S_D - \langle \mathcal{F} \rangle_4 = 2\mathcal{Q}$. We see all QRs D yield the same S_D . Calling the common value S_{QR} , we have

$$S_{QR} - \langle \mathcal{F} \rangle_4 = 2\mathcal{Q}.$$

CASE: $D \in NQR$ Now $\left(\frac{-D}{F} \right) = -\langle \mathcal{F} \rangle_4$. As y varies, product Dy^2 visits each NQR twice. Calling the common value S_{NQR} , we have that

$$S_{NQR} + \langle \mathcal{F} \rangle_4 = 2\mathcal{N}.$$

Adding, gives that

$$4b: \quad S_{QR} + S_{NQR} = 2 \sum_{x \neq 0} \left(\frac{1 - x}{F} \right).$$

But $\left(\frac{1}{F} \right) + \sum_{x \neq 0} \left(\frac{1 - x}{F} \right) = \sum_x \left(\frac{1 - x}{F} \right) = 0$. Thus

$$4c: \quad S_{QR} + S_{NQR} = -2.$$

Last step. Over F , note $x^2 - 1 = [x - 1][x + 1]$, and $-1 \neq 1$, since F is odd. So Quad-Legendre-sum Thm (3) informs us that $-1 = S_1 = S_{QR}$. Now (4c) assures that $S_{NQR} = -1$. \diamond

4d: Corollary. Using the \mathcal{Q} and \mathcal{N} from above,

$$\sum_{w \in QR} \left(\frac{1 - w}{F} \right) = \frac{1}{2}[-\langle \mathcal{F} \rangle_4 - 1], \quad \sum_{z \in NQR} \left(\frac{1 - z}{F} \right) = \frac{1}{2}[\langle \mathcal{F} \rangle_4 - 1] \diamond$$

Definition. Recall that the **discriminant** of polynomial $g(x) := Ax^2 + Bx + C$ with $A \neq 0$, is $\text{Discr}(g) := B^2 - 4AC$. \square

4e: General Quad-LS Thm. Fix an odd F and consider polynomial

$$g(x) := x^2 + Bx + C, \quad \text{with } B, C \in F,$$

$$\text{and sum } S_g := \sum_{x \in F} \left(\frac{g(x)}{F} \right).$$

In the algebraic closure \bar{F} , factor $g(x)$ as

$$g(x) = [x - U][x - V], \quad \text{with } U, V \in \bar{F}.$$

Then

$$4e': \quad \mathcal{S}_g = \begin{cases} \mathcal{F} - 1 & ; \text{if } U = V, \text{ i.e. } \text{Discr}(g) = 0 \\ -1 & ; \text{if } U \neq V, \text{ i.e. } \text{Discr}(g) \neq 0 \end{cases}.$$

So a general $g(x) := Ax^2 + Bx + C$ [where $A, B, C \in \mathbb{F}$ with $A \neq 0$] thus has

$$4e'': \quad \mathcal{S}_g = \begin{cases} [\mathcal{F} - 1] \cdot \left(\frac{A}{\mathbb{F}}\right) & ; \text{if } \text{Discr}(g) = 0 \\ -\left(\frac{A}{\mathbb{F}}\right) & ; \text{if } \text{Discr}(g) \neq 0 \end{cases}.$$

Pf of (4e'). Since \mathbb{F} is odd, value $\frac{B}{2}$ is well-defined, and $D := [\frac{B}{2}]^2 - C \in \mathbb{F}$. Complete the square to write

$$g(y) := [y + \frac{B}{2}]^2 - D.$$

Define $h(x) := g(x - \frac{B}{2}) \stackrel{\text{note}}{=} x^2 - D$.

Our h is a translate of g , so $\mathcal{S}_g = \mathcal{S}_h$. And g has a double-root [in $\bar{\mathbb{F}}$] IFF h does IFF $D = 0$. [Thus any $\bar{\mathbb{F}}$ -double-root of g already lies in \mathbb{F} .] The improvement is that (4a) applies to h . Happily, it yields (4e').

Finally, note $4D = B^2 - 4C = \text{Discr}(g)$. ◆

Remark. George Andrews' text, in Thm 10-1 on P.128, states the following theorem with $\mathbb{F} = \mathbb{Z}_p$ and $\Gamma = 1$. His proof works in the following slightly more general context. □

5: Gap-QR Thm. Fix an odd \mathbb{F} , and a non-zero “gap” $\Gamma \in \mathbb{F}$. Define the set

$$\mathcal{C} := \left\{ x \in \mathbb{F} \mid \text{Both } x, x - \Gamma \in \text{QR} \right\}.$$

Let $N := |\mathcal{C}|$. Then

$$5a: \quad N = \frac{1}{4} \left[\mathcal{F} - 3 - \left(\frac{\Gamma}{\mathbb{F}}\right) - \left(\frac{-\Gamma}{\mathbb{F}}\right) \right].$$

Write \mathcal{F} as $4T - 1$ or $4T + 1$ as \mathcal{F} is 4NEG or 4POS. Then we can restate (5a) as

5b: When \mathcal{F} is 4NEG: $N = T - 1$.

5c: When \mathcal{F} is 4POS: $N = T - \frac{1}{2} [1 + \left(\frac{\Gamma}{\mathbb{F}}\right)]$. ◆

Pf. Note $0, \Gamma \notin \mathcal{C}$. Define $\mathcal{J} := \mathbb{F} \setminus \{0, \Gamma\}$. Then

$$4N = \sum_{x \in \mathcal{J}} \left[1 + \left(\frac{x}{\mathbb{F}}\right) \right] \cdot \left[1 + \left(\frac{x - \Gamma}{\mathbb{F}}\right) \right],$$

since, for each $x \in \mathcal{J}$, both $\left(\frac{x}{\mathbb{F}}\right)$ and $\left(\frac{x - \Gamma}{\mathbb{F}}\right)$ lie in $\{\pm 1\}$.

As $|\mathcal{J}| = \mathcal{F} - 2$, we get that $4N$ equals

$$*: \quad [\mathcal{F} - 2] + \underbrace{\sum_{x \in \mathcal{J}} \left(\frac{x}{\mathbb{F}}\right)}_U + \underbrace{\sum_{x \in \mathcal{J}} \left(\frac{x - \Gamma}{\mathbb{F}}\right)}_V + \underbrace{\sum_{x \in \mathcal{J}} \left(\frac{x}{\mathbb{F}}\right) \left(\frac{x - \Gamma}{\mathbb{F}}\right)}_S.$$

Evidently $\left(\frac{\Gamma}{\mathbb{F}}\right) + U = \sum_{x \neq 0} \left(\frac{x}{\mathbb{F}}\right) = 0$, since \mathbb{F} is odd.

Consequently $U = -\left(\frac{\Gamma}{\mathbb{F}}\right)$.

Similarly, $\left(\frac{-\Gamma}{\mathbb{F}}\right) + V = \sum_{x \neq 0} \left(\frac{x}{\mathbb{F}}\right) = 0$; so $V = -\left(\frac{-\Gamma}{\mathbb{F}}\right)$.

Computing \mathcal{S} . Let $g(x) := x \cdot [x - \Gamma]$. Then \mathcal{S} equals $\sum_x \left(\frac{g(x)}{\mathbb{F}}\right)$. Since g has distinct roots, both in \mathbb{F} , the Quad-Legendre-sum Thm (3) says that $\mathcal{S} = -1$.

Plugging the values for U, V, S into (*) will produce the claimed (5a). ◆

Filename: Problems/NumberTheory/legendre-sym.

finite-field.latex

As of: Tuesday 03Jun2014. Typeset: 1Mar2023 at 12:15.