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Overview. We extend some theorems about the
finite fields.

Standing notation. Use F = Fq := GF(q) for the
finite field of cardinality q = pL, where p is prime and
L ∈ Z+. So Fp = Zp. Rather than q, use

�� ��F := |F|
and, extending our Euler-phi-fnc notation, define the
units-group

ΦF := Fr {0} and ϕF := |ΦF| = F − 1 .

More generally, consider a commutative ring Γ: We
will sometimes use 0 ,1 for the zero and one of Γ, to
emphasize that they are elements of the ring. Use ΦΓ

for the units-group,{
α ∈ Γ

∣∣ ∃β ∈ Γ s.t αβ = 1
}
.

Say “F is odd” to mean |F| is odd, i.e the character-
istic of the field, Char(F)

note
=== p, is odd. Finally, when

F is odd, define [H for Half]

HF := 1
2 · |ΦF| =

F − 1

2
.

Legendre symbol. A quadratic-residue , an F-
QR, is an α ∈ ΦF for which ∃σ ∈ F such that σ2 = α.
[Necessarily, σ ∈ ΦF.]

A non-quadratic–residue , an F-NQR, is a unit α
for which no sqroot exists.

Define the Legendre-symbol
( ·
F

)
:F→{ 1, 0, 1} by(0

F

)
:= 0 and, for α a unit:

(α
F

)
:= 1 if α ∈ QR, else(α

F

)
:= 1 if α ∈ NQR. �

1: Gen Wilson’s Thm. Below, F is a finite-field, and Γ
is a commutative ring with finite units-group.

a: Let S := {σ ∈ Γ | σ2 = 1}, the sqroots of 1 . Then∏
(ΦΓ) =

∏
(S).

b: For p = 2: Product
∏

(ΦF) = 1
note
=== 1 , in F.

c: For p an odd prime: Product
∏

(ΦF) = 1 . ♦

Pf of (a). Define h:ΦΓ � by h(x) := 1/x. Since h is
an involution, orbits have size 2 or 1 [are h-fixed-points].
The elements of a size-2 orbit multiply to 1, so we can
discard them. �

Pf of (b,c). Polynomial x2 − 1 factors over F as
[x− 1][x+ 1], and this factorization is unique, since F
is a field. Hence the only h-fixed-pts are ±1 .

When p = 2, then 1=1 , whence
∏

(ΦF) = 1 . For
p oddprime,

∏
(ΦF) =

∏
({ 1 , 1}) = 1 . �

2: Legendre-Symbol Thm (LSThm). Every unit in
GF(2L) is a QR.

Fix an odd(-card.) field F. Then for all x,α,β ∈ F:

i:

(
x

F

)
= xHF .

ii:

(α · β
F

)
=

(
α

F

)(β
F

)
. Also,

( 1

F

)
= 〈F〉4,

where 〈·〉4 is the symmetric mod-4 residue. ♦

Proof. The units group of F := GF(2L) has odd order
D := 2L − 1. Recall that the mult-group of a field is
cyclic, so squaring on ΦF is the doubling-map on an
odd-cycle, which is surjective.

Establishing (i). Fix an odd F, set Φ := ΦF and
H := 1

2

[
|F| − 1

]
Certainly

(0
F

)
= 0 = 0H .

Fix a unit α and define g:Φ � by g(x) := α/x, which
is an involution. The g-fixed-pts are the sqroots of α.�� ��Case: α ∈ NQR Thus g pairs all elements of Φ.
Hence

αH =
∏

(Φ)
Wilson’s
====== 1

note
===

(α
F

)
.

�� ��Case: α ∈ QR Take σ ∈ F so that σ2 = α. Note
±σ are distinct [F is odd], so they are the only [since F

is a field] sqroots of α. Thus αH−1 =
∏(

Φ r {±σ}
)
.

Hence

1
Wilson’s
======

∏
(Φ) = αH−1 · σ · σ = 1 · αH .

So αH = 1
note
===

(α
F

)
.

Finally, both (ii) and (iii) follow from (i). �
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Relations among QRs. We start by summing Leg-
endre-symbols along a quadratic polynomial.

3: Quad-Legendre-sum Thm (G. Andrews, P.130, Thm 10-3).
On an odd F, let g(x) := [x− U ][x− V ], where
U,V ∈ F. Define the sum

S :=
∑
x∈F

(g(x)

F

)
.

If U = V then S = F − 1. If U 6= V then S = 1. ♦

Proof. Set y := x− U and D := V − U ∈ F. This

CoV makes S =
∑
y

( y·[y−D]

F

)
=
∑
y 6=0

( y·[y−D]

F

)
, since(0

F

)
= 0. Use ỹ for the reciprocal of y. Then

(y · [y −D]

F

)
=

(ỹ 2

F

)
·
(y · [y −D]

F

)
=

(1−Dỹ

F

)
.

Setting z := ỹ, then, S =
∑
z 6=0

(1−Dz
F

)
=
[∑
z

(1−Dz
F

)]
−1,

since
(1
F

)
= 1.�� ��Case: U = V So D = 0, hence S = F − 1.�� ��Case: U 6= V Now D 6= 0. As z ranges over F,

so does Dz, hence so does 1 −Dz. Our F is odd, so∑
w

(w
F

)
= 0. Thus S = 0− 1 = 1. �

4a: Lemma. Fix an odd F and a D ∈ F. Define

SD :=
∑
x

(x2 −D

F

)
.

When D 6= 0 then SD = 1. Trivially, S0 = F − 1. ♦

Pf. Fix D 6= 0 and define

Q :=
∑
w∈QR

(1− w

F

)
and N :=

∑
z∈NQR

(1− z

F

)
.

For each x ∈ Φ, let x̃ denote its reciprocal.

Note SD −
( D

F

)
equals

∑
x 6=0

(x2 −D

F

)
=
∑
x 6=0

(1−Dx̃2

F

)
=
∑
y 6=0

(1−Dy2

F

)
.

�� ��Case: D ∈ QR Then
( D

F

)
=
( 1

F

)
= 〈F〉4. As

y varies, product Dy2 hits each QR twice. Conse-
quently, SD − 〈F〉4 = 2Q. We see all QRs D yield
the same SD. Calling the common value SQR, we have

SQR − 〈F〉4 = 2Q .

�� ��Case: D ∈ NQR Now
( D

F

)
= 〈F〉4. As y varies,

product Dy2 visits each NQR twice. Calling the com-
mon value SNQR, we have that

SNQR + 〈F〉4 = 2N .

Adding, gives that

SQR + SNQR = 2
∑
x 6=0

(1− x

F

)
.4b:

But
(1
F

)
+
∑
x 6=0

(1−x
F

)
=
∑
x

(1−x
F

)
= 0. Thus

SQR + SNQR = 2 .4c:

Last step. Over F, note x2 − 1 = [x− 1][x+ 1],
and 1 6= 1, since F is odd. So Quad-Legendre-sum
Thm (3) informs us that 1 = S1 = SQR. Now (4c)
assures that SNQR = 1. �

4d: Corollary. Using the Q and N from above,

∑
w∈QR

(1−w
F

)
= 1

2

[
〈F〉4 − 1

]
,
∑

z∈NQR

(1−z
F

)
= 1

2

[
〈F〉4 − 1

]
.♦

Definition. Recall that the discriminant of poly-
nomial g(x) := Ax2 + Bx + C with A 6= 0, is
Discr(g) := B2 − 4AC. �

4e: General Quad-LS Thm. Fix an odd F and consider
polynomial

g(x) := x2 +Bx+ C , with B,C ∈ F,

and sum Sg :=
∑
x∈F

(g(x)

F

)
.

In the algebraic closure F, factor g(x) as

g(x) = [x− U ][x− V ] , with U,V ∈ F .
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Then

Sg =

{
F − 1 ; if U = V , i.e Discr(g) = 0

1 ; if U 6= V , i.e Discr(g) 6= 0

}
.4e′:

So a general g(x) := Ax2 + Bx + C [where A,B,C ∈ F

with A 6= 0] thus has

Sg =

[F − 1]·
(A
F

)
; if Discr(g) = 0(A

F

)
; if Discr(g) 6= 0

 .4e′′: ♦

Pf of (4e′). Since F is odd, value B
2 is well-defined,

and D := [B2 ]2−C ∈ F. Complete the square to write

g(y) :=
[
y + B

2

]2 − D .

Define h(x) := g(x− B
2 )

note
=== x2 − D.

Our h is a translate of g, so Sg = Sh. And g has a
double-root [in F] IFF h does IFF D = 0. [Thus any
F -double-root of g already lies in F.] The improvement is
that (4a) applies to h. Happily, it yields (4e′).

Finally, note 4D = B2 − 4C = Discr(g). �

Remark.George Andrews’ text, in Thm 10-1 on P.128,
states the following theorem with F = Zp and Γ = 1.
His proof works in the following slightly more general
context. �

5: Gap-QR Thm. Fix an odd F, and a non-zero “gap”
Γ ∈ F. Define the set

C :=
{
x ∈ F

∣∣∣ Both x, x−Γ ∈ QR
}
.

Let N := |C|. Then

N = 1
4

[
F − 3−

(Γ
F

)
−
( Γ

F

)]
.5a:

Write F as 4T − 1 or 4T + 1 as F is 4Neg or 4Pos.
Then we can restate (5a) as

When F is 4Neg: N = T − 1 .5b:

When F is 4Pos: N = T − 1
2

[
1 +

(Γ
F

)]
.5c: ♦

Pf. Note 0 ,Γ /∈ C. Define
�� ��J := Fr {0 ,Γ} . Then

4N =
∑
x∈J

[
1 +

(
x

F

)]
·
[
1 +

(x− Γ

F

)]
,

since, for each x ∈ J, both
(x
F

)
and

(x−Γ

F

)
lie in {±1}.

As |J| = F − 2, we get that 4N equals

[F − 2] +
∑
x∈J

(x
F

)
︸ ︷︷ ︸

U

+
∑
x∈J

(x−Γ

F

)
︸ ︷︷ ︸

V

+
∑
x∈J

(x
F

)(x−Γ

F

)
︸ ︷︷ ︸

S

.∗:

Evidently
(Γ

F

)
+ U =

∑
x 6=0

(x
F

)
= 0, since F is odd.

Consequently U =
(Γ
F

)
.

Similarly,
( Γ

F

)
+ V =

∑
x 6=0

(x
F

)
= 0; so V =

( Γ

F

)
.

Computing S. Let g(x) := x·[x− Γ]. Then S

equals
∑
x

(g(x)

F

)
. Since g has distinct roots, both in

F, the Quad-Legendre-sum Thm (3) says that S = 1.
Plugging the values for U, V, S into (∗) will produce

the claimed (5a). �

Filename: Problems/NumberTheory/legendre-sym.
finite-field.latex

As of: Tuesday 03Jun2014. Typeset: 1Mar2023 at 12:15.

Filename: Problems/NumberTheory/legendre-sym.finite-field.latex


