

Prof. JLF King
Touch: 16Mar2016

Reading. Please read the ergodic theory chapter of Billingsley.

Notation in force. For sets $E, A \subset \mathbb{N}$, say that “ E eventually includes A ” if

$$E \supset A \cap [N.. \infty)$$

for *some* sufficiently large N .

6a: Suppose that A_1, A_2, \dots are zero-density subsets of \mathbb{N} . Then there exists a zero-density set E which eventually-includes each A_j . [Hint: Think Cantor diagonalization.]

Consider a sequence \vec{X} of non-negative reals. For each $\varepsilon > 0$, let

$$\mathcal{N}_\varepsilon := \{n \mid x_n \geq \varepsilon\}.$$

For each ε , suppose that each \mathcal{N}_ε is a zero-density set. **Prove** that there exists a zero-density set $\mathcal{Z} \subset \mathbb{N}$ so that $x_n \rightarrow 0$ off of \mathcal{Z} ; that is, as $n \rightarrow \infty$ with $n \in \mathbb{N} \setminus \mathcal{Z}$.

6b: Do Billingsley’s problem, 24.7P.326. Here $(T: X, \mathcal{X}, \mathbb{P})$ is a *mixing* transformation. A fnc $\delta: X \rightarrow [0, \infty)$, with $\int_X \delta() d\mathbb{P} = 1$, gives rise to a *new* probability measure μ (the text calls it \mathbb{P}_0) by

$$\mu(A) := \int_A \delta() d\mathbb{P}.$$

Prove, for each measurable B , that

$$\mu(T^{-n}(B)) \rightarrow \mathbb{P}(B)$$

as $n \rightarrow \infty$. [Hint: You might first want to consider the case where δ is a (scaled) indicator function $[1/\mathbb{P}(A)]\mathbf{1}_A$.]