

Notes. The symbol $C_R(Q)$ denotes the circle of radius R , centered at $Q \in \mathbb{C}$.

Please be sure to write expressions unambiguously e.g., the expression “ $1/a+b$ ” should be parenthesized either $[1/a]+b$ or $1/[a+b]$ so. Similarly, write “ $\sin(x)$ ” rather than “ $\sin x$ ”. Be careful with negative signs!

γ1: [50 × 4 = 200 points]. Quickos: Fill in the blanks below, writing your answer in simplest form unless otherwise indicated. **Show no work.** There is no (well...little) partial credit, so carefully check that you have written what *you* mean.

(a) Compute the radius-of-convergence of pow.series

$$\sum_{n=0}^{\infty} \frac{2^n + 3^n}{1 + 5n} z^n. \quad \text{RoC} = \boxed{\dots}$$

(b) Let $R \in [0, +\infty]$ be the radius-of-convergence of a power series $\sum_{n=0}^{\infty} b_n z^n$. Let $a_n := |b_n|$. Give a formula for R in terms of the a_n numbers and limsup and/or liminf and/or lim.

$$R = \boxed{\dots}.$$

(c) Please compute the first four coefficients of the power series, centered at zero, of $1/\exp$.

$$\frac{1}{e^z} = \boxed{\dots} + \boxed{\dots} z + \boxed{\dots} z^2 + \boxed{\dots} z^3 + \dots$$

(d) Let $g(z) := \frac{1}{z \cdot [\sin(z)]^2}$. Compute the residue at zero. $\text{Res}_g(0) = \boxed{\dots}$.

Notes. For the next two questions you should show all work on separate sheets of paper that you provide. Please staple those sheets to this Problem-sheet, with the Problem-sheet as the first page. Please put your name on **each page** of your write-up, and number the pages consecutively, including diagram pages. Carefully and cogently write up your solutions in complete English sentences (*please write only on every third line, so that I have room for comments*) drawing good large pictures, where appropriate. If you use a theorem, please **state** it precisely, and overtly check that its hypotheses are satisfied in your application.

γ2: [220 points]. For an $R > 0$ and $Q \in \mathbb{C}$, suppose that h is analytic on $\text{Disk}_R(Q)$. For $K = 0, 1, 2, \dots$, define the K -th Taylor polynomial

$$\text{Tay}_K(w) := \sum_{n=0}^{K-1} \frac{h^{(n)}(Q)}{n!} \cdot [w - Q]^n.$$

For each $w \in \text{Ball}_R(Q)$, define $E_K(w)$ by

$$h(w) = \text{Tay}_K(w) + [w - Q]^K \cdot E_K(w),$$

and $E_K(Q) := 0$.

(i) State the integral-form of E_K , by **filling in** the missing integrand.

$$E_K(w) = \frac{1}{2\pi i} \int_{\boxed{\dots}} dz.$$

(ii) For notational simplicity, henceforth assume that $Q = 0$. Use the Cauchy Integral Formula Theorem to *prove* your form above.

(iii) For each $w \in \text{Ball}_R(Q)$, prove that

$$\lim_{K \rightarrow \infty} w^K \cdot E_K(w) = 0.$$

γ3: [200 points]. Use the residue calculus to compute

$$I := \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{5z + 1}{[z^4 + 4][z^2 + 3]} dz.$$

To save computation, you may define some **explicit** complex numbers P_1, \dots, P_L (you decide what L is) and **explicit** functions f_1, \dots, f_L , and then may express your answer in the form

$$I = f_1(P_1) + \dots + f_L(P_L).$$

You do not need to actually perform the addition.

Filename: `Classwork/ComplexAnalysis/gamma.cl.ams.tex`
 As of: Mon Apr 19, 1999 Typeset: 25January2017