

Hello. Please write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

G1: Show no work.

[z] In \mathbb{R} : $[1+i]^{2009} = \boxed{\dots} + i \cdot \boxed{\dots}$

[Hint: Multiplying complexes multiplies their modulii, and adds their angles. You may use sin and cos if you wish.]

[z2] Sqroot of $i-1$ in the upper-halfplane is $r \cdot \text{cis}(\theta)$, where $r = \boxed{\dots} \in \mathbb{R}_+$ and $\theta = \boxed{\dots} \in [0, \frac{\pi}{2}]$.

[Hint: Recall, for $\theta \in \mathbb{R}$, that $\text{cis}(\theta)$ abbreviates the sum $\cos(\theta) + i \cdot \sin(\theta)$.]

[a] In \mathbb{R} , the set, \mathbb{I} , of irrational numbers is a \mathcal{G}_δ -set. We know this because we can write $\mathbb{I} = \boxed{\dots}$

[b] Poly $\beta(x) := x^{19} + x^{96}$ has 9th derivative, $\beta^{(9)}(x) = \boxed{\dots}$ (Coeffs ITOf prods and quotients of factorials.)

Our integral-formula of the 9th Remainder-term, centered at 5, evaluated at 4, is

$$\mathbf{R}_{9,5}^\beta(4) = \int_{\boxed{\dots}}^{\boxed{\dots}} \dots \cdot dt.$$

[c] Let $h := [y \mapsto \cos(2y)]$. Then the 5-topped poly $\mathbf{T}_{5,\pi}^h(x) = \boxed{\dots}$

[Hint: The center of expansion is π , not zero.]

[d] P.L fncs $f_n \xrightarrow[n \rightarrow \infty]{\text{ptwise}} \mathbf{0}$ have $[\int_0^5 f_n] = n^2$. The cutpoint and height tuples of f_n are

$$\vec{p}_n := (0, \boxed{\dots}, \boxed{\dots}, \boxed{\dots}, 5)$$

$$\text{and } \vec{h}_n := (0, \boxed{\dots}, \boxed{\dots}, \boxed{\dots}, 0).$$

$$\text{And } \|f_n\|_{\sup} = \boxed{\dots}.$$

[e] Map $g: [0, 1] \rightarrow \mathbb{R}$ is not RI, yet $|g|$ is RI, where $g := \boxed{\dots}$

[f] Writing poly $p(x) := 6 + 23x^2 - 7x^3 + 4x^4$ as $\sum_{k=0}^4 C_k \cdot [x+2]^k$, coeff C_3 is in: Circle one interval

$(-\infty, -70), \quad [-70, -15), \quad [-15, -8), \quad [-8, -1), \quad [-1, 8),$
 $[8, 15), \quad [15, 30), \quad [30, 75), \quad [75, 94), \quad [94, +\infty).$

[g] Let $\varphi(x, y) := x^3y^5 + 2^x$. Then the Hessian matrix of φ is $H(x, y) = \boxed{\dots}$ (More room than given here.)

[h1] On the circle $x^2 + y^2 = 1^2$, the max-point of $\Gamma(x, y) := \sin(xy)$ is $(\boxed{\dots}, \boxed{\dots})$.

[h2] On the ellipse $[\frac{x}{3}]^2 + [\frac{y}{4}]^2 = 1^2$, the max-point of $\Gamma(x, y) := x - 2y$ is $(\boxed{\dots}, \boxed{\dots})$.

[i] An explicit bijection $F: \mathbb{N} \hookrightarrow \mathbb{Z}$ is this:
When n is even, then $F(n) := \boxed{\dots}$
When n is odd, then $F(n) := \boxed{\dots}$

[j] Let $J := [0, 1]$. A map $h: J \rightarrow \mathbb{R}$ is **Lipschitz cts** IFF

An example of a *continuous* but **not** Lipschitz $f: J \rightarrow \mathbb{R}$, which is *differentiable* on $J^\circ = (0, 1)$ is
 $f(x) := \boxed{\dots}$

Essay question: Carefully write a triple-spaced essay solving the problem.

G2: Let $J := [0, 1]$ and $K := [3, 5]$. Suppose $g: K \rightarrow \mathbb{R}$ is Lipschitz cts, with Lipschitz-constant 7. Suppose $f \in \text{RI}(J \rightarrow K)$. Let $h := g \circ f$. Prove that h is integrable.
[Hint: Start with “PROOF: Fix $\varepsilon > 0$.” Perhaps define some other quantities. Now prove, given an arbitrary ptn P , that $\text{Osc}^h(P) \leq \varepsilon$.]

G3: Set $J := [4, 7]$. *Recall:* Thm A. Fnc $f: J \rightarrow \mathbb{R}$ is RI IFF $\forall \varepsilon, \exists$ a partition P such that $\text{Osc}^f(P) \leq \varepsilon$.

Use Thm A to prove: Thm B. Suppose $f: J \rightarrow \mathbb{R}$ is strictly-increasing. Then f is RI.

G4: Let $J := [0, \frac{1}{5}]$. Give a specific example of a *bounded* fnc $\varphi: J \rightarrow \mathbb{R}$ which is *not* Riemann integrable. Give a number $L := \boxed{\dots} > 0$ st. for each ptn P of J : $\text{Osc}^\varphi(P) \geq L$.

Give a *formal proof* of this assertion. [Hint: Do not restate the problem. Firstly, tell me what your L is, and why. Now, for each closed subinterval $B \subset J$, prove an appropriate lower bound for $\text{Var}^\varphi(B)$. Now...]

G5: Carefully state the version of FTC from our NOTES.
[Hint: Can you prove it?]

G6: Prove: Let $J := [0, 1]$. Suppose $f, g \in \text{RI}(J \rightarrow \mathbb{R})$. Suppose $|f| \leq 3$ and $|g| \leq 4$. Then $f \cdot g \in \text{RI}$. [Hint: You'll want to explicitly use the bounds 3 and 4.]

G7: Let $J := [0, 1]$. Suppose $f: J \rightarrow \mathbb{R}$ is RI. Prove that $|f|$ is RI. Prove that $|\int_J f| \leq \int_J |f|$.

End of Prac-G