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GCD. We’ll sometimes use a red under-bracket for
greatest common divisor, e.g, n,m := GCD(n,m).

Prolegomenon. The famous Fibonacci sequence
~f := (((fn)))

∞
n= ∞ is defined by f0 := 0, f1 := 1 and

fn+1 = fn + fn−1 ,1a:

producing this doubly-∞ sequence:
n . . . 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 . . .

fn . . . 5 3 2 1 1 0 1 1 2 3 5 8 13 21 34 55 . . .

Let α and β be the positive and negative roots of
the characteristic polynomial of ~f , which is

Fib(x) := x2 − x− 1
note
=== [x−α][x− β] . So

α+ β = 1 and α · β = 1 . Moreover

α2 = α+ 1, β2 = β + 1 and α,β = 1
2 [1±

√
5].

1b:

For future reference,

α > 1 > |β| .1c:

Binet Formula. Let ϕ :=
√
5 . [Mnemonic “phi”

to evoke “five”.] Our ~f is some linear combination
A·[n 7→ αn] +B·[n 7→ βn]. Easily, B = A = 1

ϕ , so

∀n ∈ Z : fn = 1
ϕ · [α

n − βn] ,2:

since this formula gives correct values for f0 and f1.

2a: Lemma. Courtesy Binet:

∀n ∈ Z: αn = fnα + fn−1. Also,†:
5α2 = [α+ 2]2.‡:

Each of these holds with α replaced by β. ♦

Pf of (†). We prove (†) for n positive. The base case is
α1 = 1·α+ 0 = f1·α+ f0. Inductively

αn+1 = α·
[
fnα+ fn−1

]
= fnα

2 + fn−1α

= fn[α+1] + fn−1α

= [fn + fn−1]α+ fn

which equals fn+1α + fn, as desired. �

Pf (‡). Squaring, [α+2]2 = α2 + 4[α+1] = α2 + 4α2. �
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Recurrence doubling

A fibonacci-like sequence ~z := (((zn)))
∞
n=0 is defined via

(possibly complex) numbers P and S, by

zn+2 := Szn+1 − Pzn ,3.1:

and some initial condition (((z1, z0))). With

G :=
[ S P
1 0

]
, then

[ zn+1
zn

]
= Gn · [ z1z0 ] ,3.2:

for each integer n.
A number r 6=0 engenders seq n 7→ rn. It satisfies

recurrence (3.1) IFF r is a root of polynomial

f(x) := x2 − Sx+ P factored
====== [x− µ][x− ν] .

Equating coeffs in the polynomial gives:

µ+ ν = S . (Sum)
µ · ν = P . (Product)

3.3:

µ2 = Sµ− P and ν2 = Sν − P .3.4:

Henceforth, we require µ 6= ν, i.e S2 6= 4P ; this,

since Discr(f)
note
=== S2 − 4P. We want µ 6= ν so that

every seq satisfying (3.1) has its nth-term equal a lin-
ear combination of µn and νn.

Doubling. Sequences (((ze)))e even and (((zd)))d odd will
satisfy some two-term linear recurrence. [The same re-
currence.] We seek numbers Ŝ and P̂ such that for r
equaling either µ2 or ν2,

r2 = Ŝr1 − P̂r0 .

I.e, that polynomial

x2 − Ŝx+ P̂ factors
===== [x − µ2] · [x − ν2] .

Squaring eqn µ2 = Sµ− P gives

µ4 = S2µ2 − 2PSµ + P2.

As Sµ = µ2 + P, so 2PSµ = 2Pµ2 + 2P2. Thus

µ4 =

Ŝ︷ ︸︸ ︷
[S2 − 2P]µ2 −

P̂︷︸︸︷
P2 .

3.5: Doubling thm. Sequence ~z := (((zn)))
∞
n=0 satisfies

recurrence
zn+2 := Szn+1 − Pzn , where S,P ∈ C.

Then sequence (((z2n)))n∈N and (((z2n+1)))n∈N each sat-
isfy recurrence

�n+2 = Ŝ ·�n+2 − P̂ ·�n

where Ŝ := S2 − 2P and P̂ := P2.
[If P6=0, then ~z can be extended backwards to

~z := (((zn)))
∞
n= ∞, and the doubling result holds.] ♦

Proof. The foregoing argument used S2 6= 4P. Since
sequence-values vary continuously with S and P, it
suffices to obtain an S2 = 4P pair as a limit of pairs
where the inequality holds. �

Fib example. The Fib-seq has S = 1 and P = 1.
Hence Ŝ = 12 − 2 = 3, and P̂ = [ 1]2. So (((f2n)))n∈Z
and (((f2n+1)))n∈Z each satisfy zn+2 = 3zn+1 − zn.

Starting an any index, then taking every 4th-
term, gives a seq satisfying zn+2 = 7zn+1 − zn, since
32 − 2·1 = 7 and 12 = 1. �

3.6: Speed-up thm. Sequence ~z := (((zn)))
∞
n=0 satisfies

recurrence zn+2 := Szn+1 − Pzn.
For posint K and natnum b, subsequence(((
znK+b

)))∞
n=0 satisfies �n+2 = Ŝ ·�n+2 − P̂ ·�n,

where x2 − Ŝx + P̂ is the characteristic polynomial
of Kth-power

GK =
[
S P
1 0

]K
. ♦

Pf. Use x2 − Ŝx + P̂ for the charpoly of M := GK .
Cayley-Hamilton asserts M2 = Ŝ·M− P̂·I. Applying
both sides to colvec [ z1z0 ], the bottom entry asserts

z2K = Ŝ·zK − P̂·z0 . �
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4: Theorem. For each integer N :

[fN ]2 + [fN−1]
2 = f2N−1 .4a: ♦

Inefficient proof. Always, LhS(4a) is non-negative.
And RhS(4a) is non-neg, even when N ∈ Z−, since
fOdd is always non-neg. So ISTProve that the squares
of LhS(4a) and RhS(4a) are equal. To this end, define

L := ϕ2 ·
[
[fN ]2 + [fN−1]

2] and

R := ϕ2 · [f2N−1]
note
=== ϕ·[α2N−1 − β2N−1] .

4b:

Leftside. By (2), ϕ·fN = αN−βN . So ϕ2·fN 2 equals

α2N + β2N − 2[αβ]N .

But αβ = 1, and N and N−1 have opposite parities.
Thus L equals

α2N + β2N + α2[N−1] + β2[N−1]

= α2[N−1][α2 + 1] + ••• ,

where the “••• ” represents a copy of all the α-terms
to its left, but with “α” replaced by “β”.

By (1b), note, α2 + 1 = α+ 2. Thus

L = α2[N−1][α+ 2] + β2[N−1][β + 2] .

Squaring L will give twice this cross-term:

[αβ]2[N−1]·[α+ 2][β + 2] = 1·[α+ 2][β + 2]

= αβ + 2[α+ β] + 4

= 1 + 2 + 4 = 5 .

Also note [α+ 2]2 = α2 + 4[α+ 1] = 5α2. Thus

L2 = α4[N−1] · 5α2 + ••• + 5 · 2 .

Consequently

1
5 · L

2 = α4N−2 + β4N−2 + 2 .4c:

Rightside of (4a). Square R and divide by 5.
Since 5 = ϕ2,

1
5 · R

2 =
[
α2N−1 − β2N−1]2 .

The cross-term is 2[αβ]2N−1 = 2 · [ 1]2N−1 = 2,
since 2N − 1 is odd. We have thus shown that

1
5 · R

2 = α4N−2 + β4N−2 + 2 .4d:

And this equals RhS(4c), as desired. �

Ahem. It’s a proof, but the next is a prettier proof.�

Dot-product proof

Fix three integers S = j + k. Evidently the dot-prod-
uct

fj+1fk + fjfk−1 = fj+1
[
fk−1 + fk−2

]
+ fjfk−1

=
[
fj+1 + fj

]
fk−1 + fj+1fk−2

= fj+2fk−1 + fj+1fk−2 .

This last dot-product is the same as the first, but with
“j + k = S” replaced by “[j+1] + [k−1] = S”. Thus,
for all j ∈ Z, expression fj+1·fk + fj·fk−1 depends
only on S.

5: Theorem. For all triples of integers S = j + k:

fj+1 · fk + fj · fk−1 = fS .5a:

In particular, (4a) holds. ♦

Proof. Setting j := 0 in LhS(5a) results in

f1fS + f0fS−1 = 1·fS + 0·fS−1 = fS .

Hence (5a). To obtain (4a) from (5a), set S := 2N − 1
and j := N−1. �

Alt Pf. Looking ahead to matrix A := [ 1 1
1 0 ] from Cassini, the

(((1, 2)))-entry of matrix AS = AjAk is (∗). �

5b: Duplication identity. For each integer n,

f2n = fn·[fn+1 + fn−1] = fn·[fn + 2fn−1] .∗: ♦

Proof. Apply (5a) with j := n−1 and k := n+1. Then
f2n = fnfn+1 + fn−1fn = fn·[fn+1 + fn−1]. So f2n equals

fn·
[
[fn+fn−1] + fn−1

]
= RhS(∗) . �
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5c: Cassini’s identity. For all n,

fn+1·fn−1 = fn
2 + [ 1]n .£: ♦

Pf. Let vn :=
[

fn
fn−1

]
. With A := [ 1 1

1 0 ], our recurrence

says Avn = vn+1. Id-matrix I = [ 1 0
0 1 ] =

[
f1 f0
f0 f 1

]
; i.e

A0 is 2×2 matrix [v1 v0]. Thus An equals
[
fn+1 fn
fn fn−1

]
.

Equation Det(An) = [Det(A)]n yields (£). �

5d: 1-3-1 Fib lemma. Fibonacci sequence ~f satisfies

[fn+1]
2 − 3[fn]

2 + [fn−1]
2 = 2 · [ 1]n .££: ♦

Proof. Squaring fn = fn+1 − fn−1 implies

fn
2 = fn+1

2 + fn−1
2 − 2fn+1·fn−1

Cassini
===== fn+1

2 + fn−1
2 − 2

[
fn

2 + [ 1]n
]

= fn+1
2 + fn−1

2 − 2fn
2 − 2[ 1]n . �

6: Lemma. ∀n∈N: [f1]2 + [f2]
2 +. . .+ [fn]

2 = fnfn+1. ♦

Pf. Easy induction. Even nicer, fnfn+1 is the area of a
fn × fn+1 business card. Decompose it into squares.�

Perodicity mod a prime. Working mod-5, note(((
f10, f11

)))
=
(((
55, 89

)))
≡5

(((
0, 1

)))
= [ 1] ·

(((
f0, f1

)))
.

Mod-5, then, Fib-seq ~f has a nega-period of length 10,
whence ~fMod-5 has 20 as a period: f20+n ≡5 fn.

[Eventually adjoin material wrt other primes.]
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Divisibility

Integer-sequence ~σ = (((σ1, σ2, . . .))) is a divisibility
sequence [div-seq ] if ∀indices j,k ∈ Z+: If j •| k then
σj •| σk.

Our ~σ is a strong div-seq if ∀j,k:

σGCD(j,k) = GCD(σj , σk).†:

Why does strong div-seq implies div-seq? When j •| k,
then GCD(j, k) = j. Hence GCD(σj , σk) = σj . And
this implies σj •| σk.

Strong div-seq implies, for each list k1, . . . , kN ,

σGCD(k1,...,kN ) = GCD(σk1 , . . . , σkN ) .‡:

Using underline for GCD, note a, c, e = a, c, e. Hence,

σa,c,e = σa,c, e
by (†)
==== σa,c , σe

by (†)
==== σa, σc , σe

= σa, σc, σe .

8.1: Lemma. For integers b > a ≥ 0, values
σn := bn − an form a divisibility sequence. ♦

Proof. Given j •| k, write k = ρ·j, and set B := bj

and A := aj . So

σk
σj

=
Bρ −Aρ

B −A
=

∑
v+u=ρ−1

v,u≥ 0

BvAu . �

8.2: Obs. Div-seq σn = bn − an need not be a strong
div-sequence. E.g, with b := 4 and a := 2, note

GCD(σ6, σ4) = GCD(4032, 240) = 48 .

Yet σGCD(6,4) = σ2 = 12. �

8.3: ? Fact ? For integers b > a ≥ 1, if b ⊥ a
then sequence σn := bn − an is a strong divisibility-
sequence. ♦

Proof. ??See proof of (11). �
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9: Theorem. Fibonacci seq ~f = (((f1, f2, f3, . . .))) is a
divisibility-sequence. ♦

Pf. Fix posint P . For n = 1, 2, . . ., we prove fP •| fnP .
The base-case is fP •| f1·P .

We apply Thm 5,

fj+k = fj+1 · fk + fj · fk−1 ,∗:

with j := nP and k := P . Inductively, quotient
Q := fnP/fP is an integer. Our (∗) says

f[n+1]P = fnP+1fP + fnP fP−1

= fnP+1fP + QfP fP−1

= fP ·
[
fnP+1 +Q fP−1

]
.

And fnP+1 + Q fP−1 is an integer. �

10.1: Prop. For integers δ, β,D: If δ |• D, then

GCD(δ + β, D) = GCD(β,D) . [Exercise] ♦

10.2: Prop. For n an integer: fn+1 ⊥ fn. [Exercise] ♦

11: Fib strong-div. Divide u 6=0 into v [both integers] to
get quotient and remainder, v = qu+ r. Then

GCD(fv, fu) = GCD(fu, fv−u) ;11a:
GCD(fv, fu) = GCD(fu, fr) ;11b:
GCD(fv, fu) = fGCD(v,u) .11c:

Thus f1, f2, f3, . . . is a strong divisibility-sequence. ♦

Pf 11a. We apply Thm 5 with j := v − u and k := u.
So

fv = fv−u+1 fu + fv−u fu−1 .

Since fu divides fv−u+1 fu, our Prop 10.1 says

fv, fu = fv−ufu−1 , fu = fv−u, fu ,

since fu−1 ⊥ fu. [Argument works also for u=0.] �

Pf 11b.Applying (11a) q times gives fv, fu = fu, fv− qu .�

Pf 11c. Recall the update rule in the Euclidean algo-
rithm (Lightning Bolt) when seeding LBolt with r0 := v
and r1 := u. Observe that the r of decomposition
v = qu+ r is the r2 of LBolt. Thus (11b) says

fr0 , fr1 = fr1 , fr2 .

But this is the update rule when seeded with fr0 and
fr1 . Consequently, letting g := v, u ,

fv, fu = fg, f0 = fg, 0
note
=== fg . �
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Can complex analysis Fib?

What is the RoC of

F(z) :=
∑

n≥0
fnz

n ,†:

the generating function of the fibonacci sequence?

Recurrence fn+2 = fn+1 + fn, and that fn ≥ 0 for
n≥0 show that sequence ~f is non-decreasing. For
n ≥ 2, the sequence is positive, so recurrence (1a)
gives

2fn−2 ≤ fn ≤ 2fn−1 . Hence

Const · [
√
2]n ≤ fn ≤ Const · 2n . Thus

1√
2
≥ RoC(F) ≥ 1

2
.

In particular, F is analytic in a nbhd of zero.

Shh. . . In fact we know that

fn = 1√
5
· [αn − βn] , where∗∗:

α = 1
2 [1 +

√
5] and β = 1

2 [1−
√
5] .

Here, α and β are the golden/silver ratios, respec-
tively. We thus have that

RoC(F) = 1/α =
2

1 +
√
5
.Shh!:

Source. Online book A First Course in Com-
plex Analysis, made freely available by Matthias
Beck, Gerald Marchesi, Dennis Pixton & Lucas Sa-
balka, has the below problem in §10.3 of their text.�

A formula for F. [Below, I’ll use F to abbreviate F(z).]
By defn,

z0 ·
∑
n≥0

fn+2·zn+2 = F − f0·z0 − f1·z1
note
=== F − z;

z1 ·
∑
n≥0

fn+1·zn+1 = z ·
[
F − f0·z0

] note
=== z · F ;

z2 ·
∑
n≥0

fn · zn = z2 · F .

From the top equality, we subtract the other two. The
lefthand side of the result is∑

n≥0

[
fn+2 − fn+1 − fn

]
zn+2 note

=== 0 ,

since fn+2 = fn+1 + fn. From the righthand sides,
then, 0 = [1− z − z2]F − z. Hence

F(z) =
z

D(z)
, where D(z) := 1− z − z2.‡:

Easily, D(z) = z2 · Fib(1z ) = z2 ·
[
1
z − α

][
1
z − β

]
.

Rewriting, D(z) =
[
αz − 1

][
βz − 1

]
. Thus

D(z) = αβ
[
z − 1

α

][
z − 1

β

] note
=== 1 ·

[
z + β

][
z +α

]
.

Residues. With Hn(z) :=
1

znD(z)
def
==

F(z)

zn+1
, note

Res
z=0

(
Hn
)
=== Res

z=0

(F(z)
zn+1

)
PlexNotes
======

P.30

1

n!
· F(n)(0) = fn.

Looking ahead,
1

βn −
1

αn
=
αn − βn

[αβ]n
=
αn − βn

[ 1]n
. So

1

[ β]n
− 1

[ α]n
= αn − βn .U:

Contour integral. Let Cr := Sphr(0). Since n≥0,
the degree of znD(z) is at least 2, whence

lim
r↗∞

1

2πi

˛
Cr

Hn = 0 .

As the singularities of Hn are 0, β, α,

0 = Res(Hn, 0) + Res(Hn, β) + Res(Hn, α) , i.e

fn = Res( Hn, β) + Res( Hn, α) .∗:

Writing Hn(z) =
1
/
[zn[α+ z]]

z − β
, the CIF gives

Res( Hn, β) = 1
/[
[ β]n[α− β]

]
. Similarly,

Res( Hn, α) = 1
/[
[ α]n[β −α]

]
.

Their sum equals

1

α− β
·
[ 1

[ β]n
− 1

[ α]n

] by (U)
=====

1

α− β
·
[
αn − βn] .

Plugging this into (∗), yields (∗∗) –which we suppos-
edly didn’t know.
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Tribonacci sequence

The bi-infinite Trib sequence is

(((t0, t1, t2))) := (((0, 0, 1))) and

tn+3 := tn+2 + tn+1 + tn ,
∗:

for n∈Z. The resulting Trib sequence is
n: . . . 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 . . .

tn: . . . 81 44 24 13 7 4 2 1 1 0 0 1 1 2 4 7 13 . . .

A nz-complex ω engenders seq n 7→ ωn, which sat-
isfies the recurrence part of (∗) IFF ω is a zero of
Trb(z) := z3 − z2 − z − 1 .

Zeros of Trb(). As Trb(1) < 0 < Trb(2), value
Trb(p) is zero for some posreal 1<p<2. The remain-
ing Trb-zeros form a complex-conjugate pair w 6=w.

To see this last, ISTShow that Trb�R has but one
zero. Its derivative equals

Trb′(x) = 3x2 − 2x− 1 = 3[z − 1][z + 1
3 ] .

At the Trb()-critical-points, each of Trb(1) = 2 and
Trb( 1

3 ) = 22
27 is negative. Hence Trb(x) is negative

for x < p, and is positive for x > p.

12: Prop’n. Sum w+w+p = 1, product w·w·p = 1.
Also, p > 1 > |w| = |w| = 1√

p . ♦

Pf. Write z3 − 1z2 − z − 1 = [z −w][z − w][z − p]
and equate coeffs. �

Trib GF. The generating function of Trib-seq is

T(z) :=
∑

n≥0
tnz

n .†: �

12a: Lemma. The RoC(T) is 1
/
|p|. Proof. Exercise.♦

“Cheating”. Cardano’s formula gives

p = 1
3

[
1 + S+ + S−

]
,

w = 1
6

[
2 + µS+ + µS−

]
,

w = 1
6

[
2 + µS+ + µS−

]
,

where

µ := 1 + i
√
3 , S+ :=

3
√
19 + 3

√
33 ,

µ := 1 − i
√
3 , S− :=

3
√
19 − 3

√
33 .

Values S+ > S− are real. And Im(w) > 0 > Im(w).
Approximately p ≈ 1.839 and w ≈ 0.419 + 0.606i.
However, we eschew this information FtTBeing. �

A formula for T. [Below, T abbreviates T(z).] By defn,

z0 ·
∑
n≥0

tn+3·zn+3 = T − t0·z0 − t1·z1 − t2·z2
note
=== T − z2 ;

z1 ·
∑
n≥0

tn+2·zn+2 = z ·
[
T − t0·z0 − t1·z1

] note
=== z · T ;

z2 ·
∑
n≥0

tn+1·zn+1 = z2 ·
[
T − t0·z0

] note
=== z2 · T ;

z3 ·
∑
n≥0

tn · zn = z3 · T .

From the top equality, subtracting the lower three
gives this LhS,∑

n≥0

[
tn+3 − tn+2 − tn+1 − tn

]
zn+3 note

=== 0 ,

by (∗). Hence 0 = [1− z − z2 − z3]T − z2,
from the RhS. Consequently,

T(z) =
z2

E(z)
, where E(z) := 1− z − z2 − z3.‡:

Zeros of E(). As E(z) = Trb(1z )·z
3, the zeros of E()

are reciprocals b := 1/p, m := 1/w and m. Thus

E(z) = 1 ·
[
z − b

][
z − m

][
z − m

]
.
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Residues. As RoC(T) is positive, Res
z=0

( T(z)
zn+1

)
= tn

for n=0, 1, . . ., courtesy (†).

Ratio T(z)
zn+1

by (‡)
===== z

znE(z) =: Hn(z) is a rational
function satisfying Deg(Denominator) ≥ Deg(Numerator) + 2.
Consequently, lim

r↗∞

´
Cr
Hn(z) dz is zero.

For r large, circle Cr encloses 0, b,m,m, the four
singularities of Hn. Hence their Hn-residues sum to
zero. Recall that the z=0 residue is tn. So. . .

tn = Res
z=b

( Hn) + Res
z=m

( Hn) + Res
z=m

( Hn)

where Hn(z) = z
/(
zn[z − b][z − m][z − m]

)
.

The sum of these three residues is

b
bn[b−m][b−m] +

m
mn[m− b][m−m] +

m
mn[m− b][m−m]

= Q·pn + U ·wn + U ·wn

= Q·pn +Re
(
U · 2wn) , where

Q = 1/p
[1/p−1/w][1/p−1/w] =

pww
[w−p][w−p]

note
=== 1

[p−w]·[p−w] ,

U = 1/w
[1/w−1/p][1/w−1/w] =

pww
[p−w][w−w]

note
=== 1

[p−w][w−w] .

12b: Theorem. For each n ∈ Z:

tn =
pn

[p−w][w −w]
+ Re

( 2wn

[p−w][w −w]

)
. ♦

After typing up this Tribonacci task , now I find the
following webpage:

https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers
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Number theory of Fib sequence

T.fol problem and soln is from Stack Exchange .

13: Five-Fib thm. For prime p, fibonacci number fp−1
is divisible by p IFF p ≡5 ±1. ♦

Note. The result holds for p=2, as both parts fail. Henceforth,
p is an odd prime. �

Pf (⇐). Suppose p ≡5 1 or p ≡5 1. Then p is
a 5-QR. Courtesy Quadratic Reciprocity, 5 is a p-QR;
this, since 5 is 4Pos.

Henceforth, ≡ means ≡p , and 〈·〉 means 〈·〉p.
Let σ be such that σ2 ≡ 5; use σ̂ := 〈1÷ σ〉 for its

reciprocal. Let ̂ := 〈1÷ 2〉. Binet’s formula for fn is

fn = 1
ϕ · [α

n − βn] , where

α,β =
(
1±ϕ

)
· 12 , where ϕ :=

√
5 ..

The Idea. Follow Binet by mimicking fn in Zp:

gn := σ̂ ·
[(
[1+σ] · ̂

)n − (
[1−σ] · ̂

)n]
= σ̂ ·

[(
1+σ

)n − (
1−σ

)n] · ̂n .
∗:

Fermat’s Little Thm. There is no oddprime p for
which 5 ≡ 1. Hence the above σ 6≡ ±1. Thus 1+σ
and 1−σ are p-units, as is ̂.

We may thus apply FLiT to conclude that

gp−1 ≡ σ̂ ·
[(
[1+σ] · ̂

)p−1 − (
[1−σ] · ̂

)p−1]
FLit
=== σ̂ · [1 − 1] = 0 .

∗∗:

Showing gN ≡ fN . ISTEstablish 2NgN
?≡ 2N fN ,

since 2 ⊥ p. To this end, let H be the largest integer
with 2H + 1 ≤ N . Then ϕ · 2N fN equals

(
1+ϕ

)N − (1−ϕ)N =
∑N

j=0

(N
j

)
·
[
1 − ( 1)j

]
ϕj

=
∑H

d=0

( N
2d+1

)
· 2ϕ2d+1

= 2ϕ ·
∑H

d=0

( N
2d+1

)
· 5d .

Hence 2N fN equals

1
ϕ ·
[(
1+ϕ

)N − (1−ϕ)N] = 2
H∑
d=0

( N
2d+1

)
· 5d note≡≡≡≡ 2N .

The same algebra shows 2NgN is mod-5 congruent to

σ̂·
[(
1+σ

)N− (1−σ)N] ≡ 2
H∑
d=0

( N
2d+1

)
· 5d ≡ 2N.�

Pf (⇒). ?? �

13a: Corollary. For n a natnum: 2n·fn ≡5 2n. ♦
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