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GCD. We'll sometimes use a red under-bracket for
greatest common divisor, e.g, n,m = GCD(n,m).

Prolegomenon. The famous Fibonacci sequence
f = (), is defined by f, :== 0, f; :== 1 and

la: foe1 = fn+fue1,
producing this doubly-co sequence:

n...5 4 -3-2-10123456
fo...5 -3 2-1 1011235

7 8 9 10...
8 13 21 34 55 ...

Let a and B be the positive and negative roots of
the characteristic polynomial of f, which is

Fib(z) = 2? -z - 12 [z — o]z — 8]. So
1b: a+p8 =1
o’=a+1, f#=F+1and a,8 =11+ V5]

and o -3 = -1. Moreover

For future reference,

lc: a>1>|8].

Webpage http://people.clas.ufl.edu/squash/

Binet Formula. Let ¢ =

V5.
to evoke “five”.|] Our f is some linear combination

A:[n— a"] + B-[n+— B"]. Easily, -B = A = %, S0

[Mnemonic “phi”

. . _ 1. n__ Qan
2: VneZ: f,=5-[a"-p"],

since this formula gives correct values for fy and fj.

2a: Lemma. Courtesy Binet:

B VnelZ: o" = f,a+ f,_1. Also,
5% = [a+ 2%

Each of these holds with a replaced by (3. %
fof (1). We prove (t) for n positive. The base case is
a' = 1.a+0 = fi-a +fy. Inductively

" = a-[fpa+f1] = fa® + 1

= fn[a—i-l] e fn_la
= [fn + fn—l]a + fn

which equals f, 1o + f,, as desired. ¢

f (). Squaring, [@+2]? = a? + 4[a+1] = a® + 4a> ¢
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Recurrence doubling

A fibonacci-like sequence Z := (z,), is defined via
(possibly complex) numbers P and S, by

3.1: Znt+o = Szn+1 — Pzp,
and some initial condition (21, 20). With

32 G = [§ 7], then [77] =G (3]

zol»

for each integer n.

A number r#0 engenders seq n — r’". It satisfies
recurrence (3.1) IFF 7 is a root of polynomial

flz) = 2> -Sz+P faond [z — pl[z —v].

Equating coeffs in the polynomial gives:

3 3: p+v =S. (Sum)
o n-v ="P. (Product)
3.4: p,2 = Su—"P and vi=Sv-P.

Henceforth, we require p # v, ie | S? # 4P ; this,

since Discr(f) 20 §2 4P, We want i # v so that
every seq satisfying (3.1) has its n''-term equal a lin-
ear combination of pu" and v".

Doubling. Sequences (zc), oo and (24),qq Will
satisfy some two-term linear recurrence. |The same re-
currence.] We seek numbers S and P such that for

equaling either p? or v/?,

r? = St —Prl.
L.e, that polynomial
factors 2]

> — Sz +P [t — p? [z — v

Squaring eqn p? = Sy — P gives
pt = S?u? — 2PSp + P2
As Sp = p? + P, s0 2PSu = 2Pu? + 2P%. Thus

S
—

-
pt o= [S?2—2Pu? — P2

Recurrence doubling

Prof. JLF King

3.5: Doubling thm.
recurrence

Sequence z = (z,),—, satisfies

Znto = Szpi1 — Pz, , where S,P € C.

Then sequence (22,),,cy and (z2n41),cy €ach sat-
isfy recurrence

D77,+2 - § |:ln,-l-Z - ﬁ : Dn

where S = S2—2P and P = P2
[If P+#0, then Z can be
Z = (2n)" and the doubling result holds.] O

n=-oco’

extended backwards to

Proof. The foregoing argument used S? # 4P. Since
sequence-values vary continuously with & and P, it
suffices to obtain an S? = 4P pair as a limit of pairs
where the inequality holds. ¢

Fib ezample. The Fib-seq has S = 1 and P = -1.
Hence S = 12— -2 = 3, and P = [-1]%. So (f2,)
and (fon11),,cz each satisfy 2,412 = 3241 — 2n.

neZ

Starting an any index, then taking every 4%h-
term, gives a seq satisfying z,412 = 7zn+1 — 2, Since
32-21=7and 1 = 1. O

3.6: Speed-up thm.  Sequence Z = (z,),-, satisfies
recurrence zpio ‘= Szpi1 — Pzp.

For posint K and natnum b, subsquuence
(ZnK-‘rb)%O:() satisfies [0 = §-Uypo — P -0y,
where 22 — Sz + P is the characteristic polynomial
OfKth_poWer GK B [S 773}K o

1o -

Pf. Use 22 — Sz + P for the charpoly of M := GXK.
Cayley-Hamilton asserts M? = S-M — P-I. Applying

both sides to colvec [Z}], the bottom entry asserts

29K — S'ZK — P'Zo b ‘

Filename: Problems/NumberTheory/fibonacci-JK.latex
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4: Theorem. For each integer N:
da: () + [fv-1]® = fon-a. O

Inefficient proof. ~ Always, LhS(4a) is non-negative.
And RhS(4a) is non-neg, even when N € Z_, since
foaa is always non-neg. So ISTProve that the squares
of LhS(4a) and RhS(4a) are equal. To this end, define

L = QOQ . [[fN]2 + [fol]Z} and

4b:
R = @[] B2 a1 — g2

Leftside. By (2), ¢-fx = a¥—B". So ¢?-fx? equals

But a8 = -1, and N and N—1 have opposite parities.
Thus L equals

o2N 4 @2V | o2N-1] 4 gaIN-]
= OLQ[N_H [a2 + 1] + oo,

where the “44¢”” represents a copy of all the a-terms

to its left, but with “a” replaced by “3”.
By (1b), note, a® + 1 = o + 2. Thus

£ = oW U492 + g2N-1g+9].

Squaring £ will give twice this cross-term:

(BN e+ 2)[8+2] = L{a+2][3+2]
= af+2a+p8+4
=-1+24+4 = 5.
Also note [a + 2]2 = a? + 4[a + 1] = 5. Thus
[,2 = O[4[N_1} '5O£2 + eee T 5-2.
Consequently
N -

s a*N72 g g2 4 o,

U=

Rightside of (4a).
Since 5= ¢?,

Square R and divide by 5.

1.2 _

[a2N—1 _ 62N—1]2
5 .

The cross-term is —2[aB]?V ! =-2.[1]2V-1 =2

since 2N — 1 is odd. We have thus shown that

)

4d: R? = otV 4 g2 g,

Ut

And this equals RhS(4c), as desired. ¢

Dot-product proof
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Ahem. It’s a proof, but the next is a prettier proof.]

Dot-product proof

Fix three integers S = j + k. Evidently the dot-prod-
uct

fipife +ffi1 = £ [fk—l + fk—Q] + fife—1

This last dot-product is the same as the first, but with
“j+k = 5" replaced by “[j+1]| + [k—1] = S”. Thus,
for all j € Z, expression f;-f, + f;-fi_; depends
only on S.

5: Theorem. For all triples of integers S = j + k:
Haz fipr e + f5-fr = fs.
In particular, (4a) holds. O
Proof. Setting j := 0 in LhS(5a) results in

fifs + fofs—1 = 1fs + 0fs 1 = fg.

Hence (5a). To obtain (4a) from (5a), set S := 2N — 1
and j .= N—1. ¢

Alt Pf.  Looking ahead to matrix A :=[] ] from Cassini, the
(1,2)-entry of matrix A® = AZA" is (). ¢

5b: Duplication identity. For each integer n,

k2 f2n - fn'[fn+1 + fn—l] - fn[fn + 2fn—1] . <>

Proof. Apply (5a) with j := n—1 and k := n+1. Then
an - fnfnJrl + fnflfn - n'[fn+1 + fnfl]- So f2n equals

fn-[[fn+fn_1] +fn_1} = RhS(#). ¢

Filename: Problems/NumberTheory/fibonacci-JK.latex
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5c: Cassini's identity. For all n, Perodicity mod a prime. Working mod-5, note

L: fn+1~fn_1 = fn2 + [*l]n O (flg,fn) = (55,89) =5 (0,*1) = [*1] . (fo,fl).
Mod-5, then, Fib-seq f has a nega-period of length 10,

Pf. Let v,, := { f:i 1}. With A = H (1)], our recurrence whence f,q.5 has 20 as a period: fa0,, =5 fi.

says Av, = v,11. Id-matrix I = [(1) (1)] = H[l) ff,ol } ;e [Eventually adjoin material wrt other primes.|

AY is 2x2 matrix [v; vo]. Thus A™ equals [f’;zl f:il }

Equation Det(A™) = [Det(A)]" yields (£). ¢

5d: 1-3-1 Fib lemma. Fibonacci sequence ]_6 satisfies

££: fo1)? = 3[fa) + [faa]® = 2-[F1". O
Proof. Squaring f, = f,4+1 —f,_1 implies
fn2 = fn—l—l2 + 1:n—lz - 2{:n—l—l'{:n—l
Cassini fn+12 +fn—12 . 2[fn2 + [71]n]
= fop1? 612 — 2,2 —2[1]". ¢

6: Lemma. VneN: [f1]2 + [f2)2 +.. .+ [fa)? = fufus1. O

Pf. Easy induction. Even nicer, f,f, . is the area of a
f,, X f,11 business card. Decompose it into squares. ¢
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Divisibility 8.3: 7Fact? For integers b > a > 1, if b L a
then sequence o, = b" — a" is a strong divisibility-
Integer-sequence & = (01, 02,...) is a divisibility  sequence. O
sequence [div-seq| if Vinqices j.k € Z4: If j o k then
g ¢ oy.
Our & is a strong div-seq if Vj k: Proof. 17 See proof of (11). ¢
T: UGCD(j,k) = GCD((Tj,O’k).

Why does strong div-seq implies div-seq? When j o £,
then GCD(j,k) = j. Hence GCD(0j,0;) = 0. And
this implies o; o 0y.

Strong div-seq implies, for each list k1, ..., ky,

I: OGCD (k. ky) = GCD(Okys - Oky) -

Using underline for GCD, note a, ¢,e = a, ¢, e. Hence,

- by ()
Oa,c,e = Oa,c,e Oa,cy Oe
by (1)
- UG7UC7 Ue
= UCM UC; Ue N
8.1: Lemma. For integers b > a >0, values
op = b" — a" form a divisibility sequence. O

Proof. Given j ¢ k, write k = p-j, and set B = b’
and A :=a’. So

p_ AP
Uk:B A _ ZBVAU' ’

oj B-—A Vi g1
v,u>0

8.2: Obs. Div-seq 0, = b" — a" need not be a strong
div-sequence. E.g, with b := 4 and a = 2, note

GCD(06,04) = GCD(4032,240) = 48.

Yet 0QCD(6,4) — 02 = 12. [l
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9: Theorem.  Fibonacci seq f = (f1,f2,f3,...) Is a
divisibility-sequence. O

Pf. Fix posint P. For n = 1,2, ..., we prove fp ¢ f,p.
The base-case is fp o f1.p.

We apply Thm 5,
*: fivk = fi-fe + f-f1,

with j = nP and k:= P. Inductively, quotient
Q) = f,p/fp is an integer. Our (*) says

= foptifp + fupfp_a
= fupifp + Qfpfp_
= fp - [fap+1 + Qfp_1].

And fopi1 + Qfp

1:[n-l-l}P

is an integer. ¢

10.1: Prop. For integers 6,3, D: If § }o D, then

GCD(d + 8, D) = GCD(B,D). |Exercise| O

10.2: Prop. For n an integer: f,1 L f,,. [Exercise] ¢

Divisibility

Prof. JLF King

11: Fib strong-div. Divide u#0 into v |both integers| to
get quotient and remainder, v = qu + r. Then

11a: GCD(fy, fy) = GCD(fy,fy—u) ;
11b: GCD(f,,f,) = GCD(fy,f,) ;
1lc: GCD(fy, fu) = facp(v,u) -

Thus fy,fs,f3, ... is a strong divisibility-sequence.

Pf1la. We apply Thm5 with j :== v —u and k = u.

So

1:v - v—u+1fu + fv—ufu—l-

Since f, divides f,_,41 fu, our Prop10.1 says

fvafu = v—ufu—la 1:u = V—U7fU7

since f,_1 L f,. [Argument works also for u:O.] ¢
Pf 11b.Applying (11a) ¢ times gives f,, f, = fy,fy — qu 4

Pf 11c. Recall the update rule in the Euclidean algo-
rithm (Lightning Bolt) when seeding LBolt with ¢ := v
and ;1 = u. Observe that the r of decomposition
v = qu + r is the ro of LBolt. Thus (11b) says

froafrl = fﬁ ) fT‘z .

But this is the update rule when seeded with f,, and
fr,. Consequently, letting g :=v,u,

fi,fu = fgofo = f5,0 2= £, s
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Can complex analysis Fib?
What is the RoC of

Te F(z) = angfnz”,

the generating function of the fibonacci sequence?

Recurrence f,,,o = f,.1 +f,, and that f,, > 0 for
n>0 show that sequence f is non-decreasing. For
n > 2, the sequence is positive, so recurrence (la)

sIves 2fn72 < fn < 2fn71'

Const - [\/5]” < f, < Const-2".
1
V2

In particular, J is analytic in a nbhd of zero.

Hence

Thus

> RoC(F) > %

Shh... In fact we know that
Hok fn = \/Lg : [O’,n — ,Bn], where

a=11+v5] and B =11-V5].

Here, a and (3 are the golden/silver ratios, respec-
tively. We thus have that

2
Shh!: RoC(F) = 1/ = ——.
) / 1++v5
Source. Online book A First COURSE IN CoOM-

pLEX ANavysis, made freely available by Matthias
Beck, Gerald Marchesi, Dennis Pixton & Lucas Sa-
balka, has the below problem in §10.3 of their text.[]

A formula for 7.
By defn,

t
20 -an+2-z"+2 =F — fp-20 — f2t =2
n>0

2! -an+1-z”+1 =z [F - fO'ZO] note
n>0

z2-2fn~z" = 2. 7.
n>0

[Below, I'll use J to abbreviate J(z).]

— z;

From the top equality, we subtract the other two. The
lefthand side of the result is

Z [fN—f—Q

n>0

- 1:n-|-1 - fn]zn+2 %te ()7

Can complex analysis Fib?

Page 7 of 10

since f,10 = f,41 + f,. From the righthand sides,
then, 0 = [l —z—2?]F — 2. Hence

1 F(2) =

ﬁ , where D(z) = 1—2z— 2%

Easily, D(z) = 22 Fib(}) = 22 [ — ][ - 3]

z

Rewriting, D(z) = [az — 1][Bz — 1].

D(z) = affe—L][z— 4] =1

1 e 2
Residues. With H,(z) := D() def i(ﬁ, ote
F(z)
E{ex(HzJ - z:g(z"‘*‘l)
PlexNotes 1 (n) .
P30 ol F (0) - fn-
) 1 1 a — ﬂn o — /@n

Looking ahead, — — — = = . So

ﬁ o™ [Oﬁﬁ}” [,]_]n

1 1
¥: — = a" - 3"
B [

Contour integral. Let C, := Sph,(0). Since n>0,
the degree of 2" D(z) is at least 2, whence

1
lim nyn - 0.
r oo 27T1 C,

As the singularities of H,, are 0,-3, -,

0 = Res(H,.0) + Res(Hy,,-3) + Res(H,, ), ie
x:  f, = Res(-Hp,-0) + Res(-H,,-a) .

Writing -H,,(z) = W, the CIF gives
RES(*Hn,*,B) = 1/ [fﬁ]"[a — ,BH Similarly,
Res(-H,,-a) = 1/[[-a]"[B — o] .

Their sum equals
S T T 7 R %
a-p lFer ~FaPl T a-p A

Plugging this into (x), yields (x*) —which we suppos-
edly didn’t know.

Filename: Problems/NumberTheory/fibonacci-JK.latex



Page 8 of 10

Tribonacci sequence

The bi-infinite Trib sequence is

.. (to,t1,t2) == (0,0,1) and
thes = thpo +thtr +tn,
for n€Z.  The resulting Trib sequence is
n...98-7T6-5-4-3-2-1 01 2 3 45 6 7...
81442413 7 4 2 1 1 0 0 1 1 2 4 713...

th: ...

A nz-complex w engenders seq n +— w", which sat-
isfies the recurrence part of (%) IFF w is a zero of

Trb(z) =23 — 22 — 2 —1]|.

Zeros of Trb(). As Trb(l) < 0 < Trb(2), value
Trb(p) is zero for some posreal 1<p<2. The remain-
ing Trb-zeros form a complex-conjugate pair w=#w.

To see this last, ISTShow that Trb|p has but one
zero. Its derivative equals

() = 322~ 20— 1 = 3z~ 1}z + 4.
At the Trb()-critical-points, each of Trb(1) = -2 and

Trb(3}) = Z2 is negative. Hence Trb(z) is negative
for « < p, and is positive for = > p.

12: Prop’'n. Sum w+w+p = 1, product w-w-p = 1.
Also, p>1>]w\:\ﬁ|:%. O

Pf. Write 23 — 122 — 2 — 1 = [z — w][z — ][z — p]
and equate coeffs. ¢

Trib GF. The generating function of Trib-seq is

T T(z) = ano tp2". O

12a: Lemma. The RoC(T) is 1/|p|. Proof. Exercise.(

Tribonacci sequence
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“Cheating”. Cardano’s formula gives

p=3[1+ St + 5],
w= 12+ pSt+mSs ],
w=L2+@mS"T +pS ],
where
po=-1+iv3, St = 19+ 3V33,
T =-1-ivV3, S = /19— 3V33.

Values ST > S~ arereal. And Im(w) > 0 > Im(w).
Approximately p ~ 1.839 and w ~ -0.419 + 0.606i.

However, we eschew this information FtTBeing. [

A formula for T. [Below, T abbreviates 7(2).| By defn,

:n Z tn+3'2n+3 —

n>0

1
z E tn+2»z"+2 =

n>0

2 1
z g tngr-z"t

n>0

23-2 t, 2" 25T,

n>0

2 note

T — to-zo — t1-z1 —to2" = T — zz;

Il
S
N
—
Q
I
o+
o
N
(=}
S

From the top equality, subtracting the lower three
gives this LhS,

S ftars — tatz — tagr — to) 2" B ()
n>0
by (). Hence 0 = [1 — 2z — 2% = 23T — 27
from the RhS.  Consequently,
22 .
It T(2) = )’ where E(z) =1—2z—2° — 2°.

Zeros of E(). As E(z) = Trb(1)-23, the zeros of E()
are reciprocals b .= 1/p, m = 1/w and m. Thus

E(z) = -1-[z — b][z — m][z — m].
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Residues. As RoC(7) is positive, E{:e(s)(gn(f)l) =t,

for n=0,1, ..., courtesy ().

. Tz by® o, . .
Ra"clo P = ) = H,(z) is a rational
funCthIl Satleylng Deg(Den(uninutor) Z Deg(NUIIle!'ELt()I') + 2.

Consequently, lim |- H,(z)dz is zero.
r/(oo T

For r large, circle C, encloses 0, b, m,m, the four
singularities of H,,. Hence their H,-residues sum to
zero. Recall that the z=0 residue is t,,. So...

tn = Res(-Hy) + Res (“Hn) + Res (“Hy)

where ~Ho(2) = 2/(:"[z — ][z — m][z — m]).

The sum of these three residues is

56 —m|[b—m] T milm —bl[m—m] T mm = b][m —m]
= Qp" + Re(U -2 w”) ,  where

Q . 1/p o PWW note 1
¢ [/p-1/w][l/p-1/w] T [w-p][w-p] T [p—w|[p—w]|’
U = 1/w o pPWW note 1

T [/w-1/p][l/w-1/w] T [p-w][w-w] T [p-w][w—w]

12b: Theorem. For each n € Z:

n

B p
b = i —w)

After typing up this Trisonacct task, now 1 find the
following webpage:

https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers
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Number theory of Fib sequence

T.fol problem and soln is from .

13: Five-Fib thm. For prime p, fibonacci number f,_q
is divisible by p IFF p =5 +1. O

Note. The result holds for p=2, as both parts fail. Henceforth,
p is an odd prime. O

Pf(«<). Suppose p =5 +1 or p =5 -1. Then p is
a 5-QR. Courtesy Quadratic Reciprocity, 5 is a p-QR;
this, since 5 is 4P0s.

Henceforth, = means =,, and (-) means (-),.

Let o be such that 02 = 5; use & := (1 = o) for its
reciprocal. Let 2 := (1 = 2). Binet's formula for f,, is

where

— L g™ — 3"
fo = Lola"— B,
a,f = (lﬂ:go)-%, where ¢ = /5.

The Idea. Follow Binet by mimicking f,, in Z,:

gn = - [(1+0]-9)" — (1-0]-3)"]

=& |(140)" - (1-0)"| -3™.

Fermat’s Little Thm. There is no oddprime p for
which 5 = 1. Hence the above o % +1. Thus 140
and 1—o are p-units, as is 2.

We may thus apply FLiT to conclude that

g =6 [(14e]-0)" — (0] ]

Bt s.1-1 =o0.

Number theory of Fib sequence
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Showing gy = fy. ISTEstablish ‘QNgN < 2NfN |,
since 2 | p. To this end, let H be the largest integer
with 2H 4+ 1 < N. Then ¢ - 2Vfy equals

(1+9)" = (1=0)™ =37 () [1 - (1]
= Zf:o (QdJYH) 2%

H N d

Hence 2"Vfy equals

H

F0r0)" - 1-9)"] = 23 (ai) 57 Z=2 2N

The same algebra shows 2V g5 is mod-5 congruent to

H

~ N N
a[(l—l—a) - (1-0o) } = 22 (2511) 5% = 2N. ¢
d=0
Pf(=). 17 ¢
13a: Corollary. For n a natnum: 2"-f, =5 2n. %
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