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Prolegomenon. The word ‘entropy’ was coined by Rudolf Julius Emanuel Clausius in
1867, in [2], referring to the thermodynamic notion in physics.

Our focus here, however, will be the notion in measurable-dynamics and topological-
dynamics. (Entropy in differentiable-dynamics,”’ would require an article by itself.) Shannon’s 1948
paper [3] on Information Theory, then Kolmogorov’s [4] and Sinai’s [5] generalization to
dynamical systems, will be our starting point. I will stay in the one-dimensional case,
where the acting-group is Z.
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Glossary. Some of the following definitions refer to the “Notation” paragraph immedi-
ately below. Use mpt for ‘measure-preserving transformation’.

A measure space (X, 2, u) is a set X, a field (that is, a o-algebra) 2~ of subsets of X, and
a countably-additive measure yu: 2 —[0, c0]. (We often just write (X, ), with the field implicit.)
For a collection ¥ c 2", use FId(%’) for the smallest field D% . The number u(B) is the
“u-mass of B”.

A measure-preserving map v:(X, 2, n)—(Y, %', v) is a map : X—Y such that the in-
verse image of each B € % is in 2, and u(y"'(B)) = v(B). A (measure-preserving) trans-
Jormation is a measure-preserving map T:(X, 2, u)—(X, Z, ). Condense this notation
to(T : X, &' ,u) or (T : X, ).

A probability space is a measure space (X, u) with u(X) = 1; this u is a probability
measure. All our maps/transformations in this article are on probability spaces. A factor
map

U (T : X, Z,u0) > (S Y, %,v)

“IFor instance, see [24], [26], [18] and [15].
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1s a measure-preserving map : X—Y which intertwines the transformations,y o T = § o ¢.
And ¢ is an isomorphism if —after deleting a nullset in each space— this i is a bijection and
! is also a factor map.

A measure-theoretic statement holds almost everywhere, abbreviated a.e, if it holds off

of a nullset, mass-zero set.”> For example, B 5 A means that u(B \ A) is zero. The a.e
will usually be implicit.

A probability vector vV = (v, v,,...) is a list of non-negative reals whose sum is 1. We
generally assume that probability vectors and partitions (see below) have finitely many com-
ponents. We write “countable probability vector/partition”, when finitely or denumerably
many components are considered.

A partition P = (A, A,, . ..) splits X into pairwise disjoint subsets A; € 2 so that the
disjoint union | |; A; is all of X. Each A, is an atom of P. Use |P| or *P for the number of
atoms. When P partitions a probability space, then it yields a probability vector v, where
vj = u(Aj). Lastly, use P(x) to denote the P-atom that owns x.

Fonts. We use the font H, &, I for distribution-entropy, entropy and the information
function. In contrast, the script font .o/ % % . .. will be used for collections of sets; usually
subfields of Z". Use E(:) for the (conditional) expectation operator.

Notation. 7 = integers. Z, = positiveintegers, and N = naturalnumbers™ =
{0,1,2,...}. Use [-] and |-] for the ceiling and floor functions; |-] is also called the
“greatest-integer function”. For an interval J := [a, b) C [-c0,+00], let [a .. b) denote the
interval of integers J N Z (with a similar convention for closed and open intervals). E.g, (€. @] =
(e.m) = {3}.

For subsets A and B of the same space, Q, use A C B for inclusion and A & B for proper
inclusion. The difference set BNA is {w € B | w ¢ A}. Employ A¢ for the complement Q\ A.
Since we work in a probability space, if we let x := u(A), then a convenient convention is
to have

xX = 1-x,
since then u(A°) equals x°.

Use A A B for the symmetric difference [A \ B]U[B\ A]. For a collection ¢ = {E }; of
sets in Q, let the disjoint union | |; E; or | |(%¢') represent the union | J; E; and also assert
that the sets are pairwise disjoint.

Use “Viargenr”” to mean: “dng such that ¥n > ny”. To refer to lefthand side of an equa-
tion 17, use LhS(17); do analogously for RhS(17), the righthand side.

“’Eugene Gutkin once remarked to me that the problem with Measure Theory is... that you have to say
“almost everywhere”, almost everywhere.

“3Some well-meaning folk use N for Z, , saying ‘Nothing could be more natural than the positive inte-
gers’. And this is why 0 € N,
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Entropy example: How many questions? Imagine a dartboard, FiG. 1, split in five re-
gions, A, . .., E, with known probabilities. Blindfolded, you throw a dart at the board. What
is the expected number, V, of Yes/No questions needed to ascertain the region in which the
dart landed?

B C Fic. 1: This dartboard is a probability
A space with a 5-set partition. The atoms
have probabilities %, %, %.%.5.  This
E probability distribution will be used later
in Meshalkin’s example on page 13.

Solve this by always dividing the remaining probability in half. ‘Is it A?’; if Yes, then
V = 1. Else: ‘Is it B or C?’ —if Yes, then ‘Is it B?" —if No, then the dart landed in C, and
V=3 was the number of questions. Evidently V=3 also for regions B, D, E. Using “log” to
denote base-2 logarithm™, the expected number of questions™ is thus
2: E(V) = % -1+

3+5-3+

L
8

00—

L 3453 = Xiopi-log(r) = 2.

Letting vV := (%, %, %, %, %) be the probability vector, we can write this expectation as

BV) = ), 1.
Here, 1:[0, 1]—[0, co) is the important function”®

n(x) == x-log(1/x); soextending by continuity gives
n©0) = 0.

An interpretation of “n(x)” is the number of questions needed to winnow down to an event
of probability x.

Distribution entropy

Given a probability vector V, define its distribution entropy as

4: HE) = erﬁ n(x).

“In this paper, unmarked logs will be to base-2. In entropy theory, it does not matter much what base is
used, but base-2 is convenient for computing entropy for messages described in bits.

When using the natural logarithm, some people refer to the unit of information as a nat. In this paper, |
have picked bits, rather than nats.

“This is holds when each probability p is a reciprocal poweroftwo. For general probabilities, the
“expected number of questions” interpretation holds in a weaker sense: Throw N darts independently at
N copies of the dartboard. Efficiently ask Yes/No questions to determine where all N darts landed. Dividing
by N, then sending N — oo, will be the p - log(é) sum of (2).

““There does not seem to be a standard name for this function. I use 1, since an uppercase i looks like
an H, which is the letter that Shannon used to denote what I am calling distribution-entropy.
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Distribution entropy

In this paper, I will use the term distropy for ‘distribution entropy’ and will reserve entropy
for the corresponding dynamical concept, when there is a notion of time involved. Getting
ahead of ourselves, the entropy of a stationary process is the asymptotic average value that
its distropy decays to, as we look at larger and larger finite portions of the process.

An equi-probable vector V = (%, K, %) evidently has H (V) = log(K). On a proba-
bility space, the “distropy of partition P, written H(P) or H(A, A,, ...), shall mean the
distropy of probability vector j — u(Aj).

A (finite) partition necessarily has finite distropy. A countable partition can have fi-
nite distropy, e.g H (%, i, é, ...) = 2. One could also have infinite distropy: Consider a
piece B C X of mass 1/2". Splitting B into 2 many equal-mass atoms gives an 77-sum of
2k % Setting k = ky = 2V — N makes this p-sum equal 1; so splitting the pieces of
X = [|y=, Bn, with u(By) = QLN, yields an co-distropy partition.

The 5 function. Our 7(x) = x-log(1/x) function”” has vertical tangent at x=0, maximum
at 1/e and, when graphed in nats, slope -1 at x=1.

07 I Max at HX*|0?(X)
- (1/2, 1og(2)) ol
06| 3
B
©
05+ €
a .
sl @ Max at Fic. 5: Using natural log,
= here are the graphs of:
_— (1/e, 1/e) . .
03 s 1(x) in solid red.
H(x, x°) in dashed green.
0.2 NS 1 — x in dotted blue.
/ S Both n(x) and H(x, x°) are
011/ I strictly convex-down. The
) Probabilit . . '
ol , , , , 1-x line is tangent to n(x)
0 0.2 0.4 0.6 0.8 at x=1.

Consider partitions P and Q on the same space (X, i). Their join, written P v Q, has
atoms A N B, for each pair A € P and B € Q. They are independent, written P L Q, if
u(A N B) = u(A)u(B) for each A,B pair. We write P > Q, and say that “P refines Q”,
if each P-atom is a subset of some Q-atom. Consequently, each Q-atom is a union of
P-atoms.

Recall, for ¢ a real number, our convention that §° means 1 — §, in analogy with u(B¢)
equaling 1 — u(B) on a probability space.

“TCuriosity: Just in this footnote we compute distropy in nats, that is, using natural logarithm. Given a
small probability p € [0, 1] and setting x := 1/p, note that p(p) = @ ~ 1/n(x), where m(x) denotes the
number of prime numbers less-equal x. (This approximation is a weak form of the Prime Number Theorem.)
Is there any actual connection between the ‘approximate distropy’ function Hy(p) = 3 pep 1/x(1/p) and
Number Theory, other than a coincidence of growth rate?
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(@)

: Distropy fact. For partitions P, Q, R on probability space (X, u):

V)

: H(P) < log(*P), with equality IFF P is an equi-mass partition.

b: HQV R) < HQ) + H(R), with equality IFF Q L R.

c: For € [0, %], the function 6 — H(6, 6°) is strictly increasing.

d: R < P implies H(R) < H(P), with equality IFF R ¥ P. 0
Proof. Use the strict concavity of (), together with Jensen’s Inequality. ¢

Remark.  Although we will not discuss it in this paper, most distropy statements remain
true with ‘partition’ replaced by ‘countable partition of finite distropy’. O

Fic. 7: Using natural log: The
graph of H(x;, x;, x3) in barycen-
tric coordinates; a slice has been
removed, between z = 0.745 and
z = 0.821. The three arches
are copies of the distropy curve
from (5).

Binomial coefficients. The dartboard gave an example where distropy arises in a natural
way. Here is a second example.

For a small 6>0, one might guess that the binomial coefficient ( i ) grows asymptotically
(as n — ) like 24", for some small &. But what is the correct relation between ¢ and § ?
Well, Stirling’s formula n! =~ [n/e]" gives

n! n"

Gl Tl T o e = O] Recall o< 1-0)

Thus % . log( o ) ~ H(6,0°). But by means of the above distropy inequalities, we get an
inequality true for all n, not just asymptotically.

8: Binomial Lemma. Fix a ¢ € [0, 3] and let H := H(6, 6°). Then for eachn € Z.:

9: Z (1) < 2. 0

Jjel0..on]
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Proof. Let X c {0,1}" be the set of ¥ with#ie [l .n]|x;=1}<J-n. OnX, let P, P,,...
be the coordinate partitions; e.g P; = (47, A7), where A; := {¥| x; = 1}. Weighting each
point by ﬁ, the uniform distribution on X, gives that u(A;) < 6. So H(P7) < H, by (6¢).
Finally, the join Py Vv ...V P, separates the points of X. So

log(*X) = HP,Vv...VvP,) < HP)+...+H(P,) < Hn, ¢

making use of (6a,b). And *X equals LhS(9).

A gander at Shannon’s Noisy Channel theorem

We can restate the Binomial lemma using the Hamming metric on {0, 1}",
Dist(¥%,y) = *ie[l.n] | xi # yi} .
Use Bal(X, r) for the open radius-r ball centered at ¥, and
Bal(%,r) = {¥|Dist(¥. 5 < r}
for the closed ball. The above lemma can be interpreted as saying that

o [Bal(z,6m)| < 27" for each ¥ € {0, 1)".

10: Corollary. Fixn € Z, and 6 € [0, %], and let H = H(6,6¢). Then there is a set
C c {0, 1}, with *C > 2U'-H\"_that is strongly on-separated. l.e, Dist(¥X,¥) > on for each
distinct pair X,y € C. o

Noisy Channel. Shannon’s theorem says that a noisy channel has a channel capacity.
Transmitting above this speed, there is a minimum error-rate (depending how much “above’)
that no error-correcting code can fix. Conversely, one can transmit below —but arbitrarily
close to— the channel capacity, and encode the data so as to make the error-rate less than any
given €. We use (10) to show the existence of such codes, in the simplest case where the
noise” is a binary independent-process (a “Bernoulli” process, in the language later in this article).

We have a channel which can pass one bit per second. Alas, there is a fixed noise-
probability v € [0, %) so that a bit in the channel is perturbed into the other value. Each
perturbation is independent of all others. Let H := H(v,v). The value [1-H] bits-per-
second is the channel capacity of this noise-afflicted channel.

“8The noise-process is assumed to be independent of the signal-process. In contrast, when the perturbation
is highly dependent on the signal, then it is sometimes called distortion.
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Encoding/Decoding. Encode using an “k,n-block-code”’; an injective map F:{0, 1}¥*—{0, 1}".
The source text is split into consecutive k-bit blocks. A block ¥ € {0,1}* is encoded
to F(X) € {0,1}" and then sent through the channel, where it comes out perturbed to
@ € {0, 1}". The transmission rate is thus k/n bits-per-second.

For this example, we fix a radius >0 to determine the decoding map,

D,:{0, 1}" — {0Oops} LI {0, 1}*.

We set D,(&@) to Zif there is a unique Z with F(?) € Bal(@, r); else, set D(&) := Oops.

We can think of the noise as a {0, 1}-independent-process, with Prob(1) = v, which is
added mod-2 to the signal-process. Suppose we can arrange that the set { F(X) | ¥ e {0, 1}
of codewords, is a strongly r-separated-set. Then

The probability that a block is mis-decoded is the probability, flipping a

11: . .
v-coin n times, that we get more than r many Heads.

12: Theorem (Shannon). Fix a noise-probability v € [0, %) and let H := H (v, v°). Consider
arate R < [1-H] and an £>0. Then V,,,.n there exists a k and a code F': {0, 1}¥—{0, 1}" so
that: The F-code transmits bits at faster than R bits-per-second, and with error-rate < . ¢

Proof. Let H' := H(6, 5°), where 6 > v was chosen so small that

13: §<3i and 1-H > R.
Pick a large n for which
14: k'~ R, wherek:=[[1-H n]

By (10), there is a strongly dn-separated-set C c {0, 1} with *C > 2U-HI" S0 C
is big enough to permit an injection F : {0, 1}* < C. Courtesy (11), the probability of a
decoding error is that of getting more than én many Heads in flipping a v-coin n times.
Since 6 > v, the Weak Law of Large Numbers guarantees —once n is large enough— that
this probability is less than the given &. ¢

The information function
Weuse P=(A,,...),Q=(By,...), R=(Cy,...) for partitions, and .7, ¥ for fields.

With € a (finite or infinite) family of subfields of 2", their join \/4.c ¢ is the smallest
field .# such that 4 c #, for each 4 € €. A partition Q can be interpreted also as a
field; namely, the field of unions of its atoms. A join of denumerably many partitions will
be interpreted as a field, but a join of finitely many, P; V...V Py, will be viewed as a
partition or as a field, depending on context.
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For an A C X, use 1,:X—{0, 1} for its indicator function; 1,(x) = 1 IFF x € A. The
information function of partition P, a map 7p: X—[0, 00), is

15: Te() : AZ; log(—— (A)

It has been defined so that its expectation is the distropy of P.

E(Ip) = f To()du = H(P).
X

With respect to a subfield .7, let u(A | %) be the conditional probability function;
that is, the conditional expectation E(14 | .%#). This engenders the conditional information
Junction,

1
Tpz(x) = log(—————) - 14(x). [Its integral
5 pi7 (1) AZP AT Iw) W g

HP | F) f Ipzdu, isthe conditional distropy of P on .#

H(ANB) . Con

Conditioning on a positive-mass set B, let P|B be the probability vector A — B

ditional distropy, when conditioning on a partition, equals

17: HP|Q = > HPIB)-uB) = ) loglmmmmm) KANB).

BeQ AeP, BeQ

Write ¢, / 7 to indicate that fields ¢, C ¢, C ... are nested, and that FId(U}" %)) =
7, a.e. The Martingale Convergence Theorem, [20, P. 103], gives (c), below.

18: Conditional-distropy fact. Consider partitions P, Q, R and fields .# and ¥;. Then

a 0<SHP|.#) < H(P), with equality IFF P c 7 F , respectively, P L .7

b: HQVRI|.Z) < HQI|ZF)+HR|ZF).

c: Suppose¥; / F. Then H(P | 4;) \, H(P | F).

d HQVR) = HQI|R) + H(R).

d: HQVR; | R) = HQ | Ry Vv Ry + H(R; | Ro). O

Imagining our dartboard (1) divided by superimposed partitions Q and R, equality (18d)
can interpreted as saying: ‘You can efficiently discover where the dart landed in both
partitions, by first asking efficient questions about R, then —based on where you landed
in R— asking intelligent questions about Q.’
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Entropy of a Process

Consider an transformation (7 : X, u) and partition P = (A, A, ...). Each “time” n deter-
mines a partition P, := 7"P, whose j"-atom is 7 ~(A j)- The process T,P refers to how
T acts on the subfield \/;’ P, € 2. (An alternative view of a process is as a stationary sequence
Vo, Vi, ... of random variables V,,: X—7Z,, where V,(x) := j because x is in the j‘h-atom of P,.)

Write E(T,P) or ET(P) for the “entropy of the T,P process”. It is the limit of the
conditional-distropy-numbers

Cp = 7’((P0 | PIVPQV...VPn_l).

This limit exists since H(P) =c¢; > ¢, > ... > 0.
Define the average-distropy-number %hn, where

hn = (]'{(Po\/Pl V...VPn_l).

Certainly h, = ¢, + HP,yVv...VP,_1) = ¢, + h,_;, since T is measure preserving.

Induction gives h, = }'_; ¢;. So the Cesaro averages %hn converge to the entropy.

19: Theorem. The entropy of process (T,P : X, 2, u) equals

lim 2H(Py V...V P,) = lim H(P | \/ Py = HP 1\ P).
Both limits are non-increasing. The entropy E'(P) > 0, with equality IFF P < Vi P;.
And ET(P) < H(P), with equality IFF T,P is an independent process. 0

Generators. We henceforth only discuss invertible mpts, that is, when T is itself an mpt.
Viewing the atoms of P as “letters”, then, each x € X has a T,P-name ... x _; XgX; X5 ..
where x,, is P(T"(x)), the P-letter owning 7"(x).

A partition P generates (the whole field) under (T : X, p), if \/5, T"P =, 2. It turns
out” that P generates IFF P separates points. That is, after deleting a (T-invariant) nullset,
distinct points of X have distinct 7,P-names.

A finite set [1 .. L] of integers, our alphabet, yields the shift space X = [1 .. L} of
doubly-infinite sequences x = (... X_; XgX; ...). The shift T:XO acts on X by

*

T(X) = [I’l = Xn+1] .

Automatically, then, the time-zero partition P separates points, under the action of the shift.
This L-atom partition has P(x) = P{y) IFF X, = yo. So no matter what shift-invariant
measure is put on X, the time-zero partition will generate under the action of 7.

“°T am now at liberty to reveal that our X has always been a Lebesgue space, that is, measure-isomorphic
to an interval of R together with countably many point-atoms (points with positive mass). The equivalence of
generating and separating is a technical theorem, due to Rokhlin.

Assuming u to be Lebesgue is not much of a limitation. For instance, if u is a finite measure on any Polish
space, then u extends to a Lebesgue measure on the u-completion of the Borel sets. To not mince words: All
spaces are Lebesgue spaces unless you are actively looking for trouble . ..
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Time reversibility. A transformation need not be isomorphic to its inverse. Nonethe-
less, the average-distropy-numbers show that E(T™',P) = &(T, P); although this is not
obvious from the conditioning-definition of entropy. Alternatively,

HPo|\/P) = H(Po v ... VP = H(Py V...V P,)
20: n ]
HP-, V... VP —HP,V...vP) = HPy| \/_ P).

Bernoulli processes. A probability vector V := (vq,...,v;) can be viewed as a measure
on alphabet [1..L]. Let uy be the resulting product measure on X := [1 .. LY, with T the
shift on X and P the time-zero partition. The independent process (7,P : X, ;) is called, by
ergodic theorists, a Bernoulli process. Not necessarily consistently, we tend to refer to the
underlying transformation as a Bernoulli shift.

The (3, 3)-Bernoulli and the (3, 1, 3)-Bernoulli have different process-entropies, but
perhaps their underlying transformations are isomorphic? Prior to the Kolmogorov-Sinai
definition of entropy”'’ of a transformation, this question remained unanswered.

Entropy of a Transformation

The Kolmogorov-Sinai definition of the entropy of an mpt is
&T) = supl&EQ) | Q a partition on X} .

Certainly entropy is an isomorphism invariant —but is it useful? After all, the supremum
of distropies of partitions is always infinite (on non-atomic spaces) and one might fear that the
same holds for entropies. The key observation (restated in (23c) and proved below) was this,
from [4, Kol 1958] and [5, Sinai 1959].

21: Kolmogorov-Sinai theorem. If P generates under T, then &(T') = &(T, P). O

Thereupon the (3, 1) and (1, 1, 1) Bernoulli-shifts are not isomorphic, since their re-

spective entropies are log(2) # log(3).
Wolfgang Krieger later proved a converse to the Kolmogorov-Sinai theorem.

22: Krieger Generator Thm (1970). Suppose T ergodic. If E(T) < oo, then T has a
generating partition. Indeed, letting K be the smallest integer K > &E(T), there is a K-atom
generator.”" 0

Proof. See Rudolph [21], or [[de laRue, §5.1]], where Krieger’s theorem is stated in terms
of joinings. ¢

“10This is sometimes called measure(-theoretic) entropy or (perhaps unfortunately) metric entropy, to distin-
guish it from topological entropy. Tools known prior to entropy, such as spectral properties, did not distin-
guish the two Bernoulli-shifts; see [[Lemanczyk]] for the definitions.

“HTt is an easier result, undoubtedly known much earlier, that every ergodic T has a countable generating
partition —possibly of co-distropy.
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Entropy is continuous. Given ordered partitions Q = (By,...)and Q" = (B, .. .), extend
the shorter by null-atoms until |Q| = |Q’. Let Fat := | |;[B; N B’]; this set should have mass
close to 1 if Q and Q’ are almost the same partition. Define a new partition

QaQ = ({Fat} U {B;NB)|withi#j}.
(In other words, take Q vV Q' and coalesce, into a single atom, all the B N B, sets.) Topologize the space

of partitions by saying”'? that Q — Q when H(Q A Q) — 0. Then (23b) says that
process-entropy varies continuously with varying the partition.

23: Lemma.  Fix a mpt (T : X,u). For partitions P,Q, Q’, define R := Q A Q" and et
6 := H(R). Then

as |‘7'{(Q) - HQ)| < 0. (Distropy varies continuously with the partition.)
b: |8T(Q) - 8T(Q’)| < 0. (Process-entropy varies continuously with the partition.)
c: For all partitions Q C FId(T,P): &T(Q) < ET(P). 0

Proof of (a). Evidently Q@ VR=Q'VQ=QVR. SoHQ)<HQVR)<HQ)+56. ¢

Proof of (b).  As above, H(\/{ Q;.) < HNVY Q) + HOY R;). Sending N — co gives
ENQ) < Q) + E(R). Finally, ET(R) < H(R) and so ET(Q") < ET(Q) + 6. ¢

Proof of (c). Let K := |Q|. Then there is a sequence of K-set partitions Q¥ — Q with
?
Q® < \/“, P.. By above, &(Q") — &7(Q), so showing that & (\/*; P,) < &T(P) will

suffice. Note that
me = H(\ 1O Po) = 1P,

SoﬁhN< (H( f)v_le)+ -2L - H(P). Now send N — oo, ¢

1 1
N N
Entropy is not continuous. The most common topology placed on the space, Q, of mpts
is the coarse topology”'? that Halmos discusses in his “little red book”, [14].

The Rokhlin lemma [21, P. 33] implies that the isomorphism-class of each ergodic mpt
is dense in Q, (e.g, see [14, P. 77]) disclosing that the S +— &(S') map is exorbitantly discon-
tinuous.

Indeed, the failure happens already for process-entropy with respect to a fixed partition.
A Bernoulli process T,P has positive entropy. Take mpts S, — T, each isomorphic to an ir-
rational rotation. Then each E(S,,, P) is zero, as shown in the later section on Determinism
and Zero-entropy.

“120n the set of ordered K-set partitions (with K fixed) this convergence is the same as: Q) — Q when
u(Fat(QP,Q)) — 1.

An alternative approach is the Rokhlin metric, Dist(P,Q) := H(P | Q) + H(Q | P), which has the advan-
tage of working for unordered partitions.

“Ple, 8§, —» T IFF YAe 2 : u(S;'(A) A T (A)) — 0; this is a metric-topology, since our probability
space is countably generated. This can be restated in terms of the unitary operator Uy on L?(u), where
Ur(f) :== foT. Namely, S, — T in the coarse topology IFF Ug, — Ur in the strong operator topology.

Filename: Problems/Dynamics/Entropy/entropy.latex



Prof. JLF King Entropy of a Transformation Page 12 of 32

Further results.  When . is a T-invariant subfield, agree to use T | 5 for “T restricted
to .# ”, which is a factor (see Glossary) of T. Transformations 7 and S are weakly isomor-
phic if each is isomorphic to a factor of the other.

The foregoing entropy tools make short shrift of the following.

24: Entropy lemma. Consider T-invariant subfields ¢; and .7 .

a: Suppose 9; /' F. Then &Tty) / ET }5). In particular, 4 C .7 implies that
E(T ty) < E(T | #), so entropy is an invariant of weak-isomorphism.

b: E(T 1y vgy.) < 2;6(T1y).  And &(T, QIvQyv..) < X;8(T,Q)).
c: Formpts(S;:Y;,v): &S1XSyX...) = 2,;8(8)).

d: ET") = &T). More generally, E(T") = |n| - &T). O

E.g: Meshalkin’s map. In the wake of Kolmogorov’s 1958 entropy paper, for two Bernoulli-
shifts to be isomorphic one now knew that they had to have equal entropies. Meshalkin
provided the first non-trivial example [44], in 1959.

Let S:YO be the Bernoulli-shift over the “letter” alphabet {E, D, P, N}, with probability
distribution (i, %, %, j—t). The letters E, D, P, N stand for Even, oDd, Positive, Negative, and
will be used to describe the code (isomorphism) between the processes.

Use T:XO for the Bernoulli-shift over “digit” alphabet {0, +1,-1,+2,-2}, with proba-
bility distribution (%, é, %, %, é). Both distributions, %, }—P %, %) and (%, %, é, %, %), have dis-
tropy log(4).

After deleting invariant nullsets from X and Y, we will construct a measure-preserving
isomorphism y: X—Y sothat T oy =y o S.

The Code. In X, consider this point x:
O 0 0 -1 0 0 +1 +2 -1 +1 0

Regard each 0 as a left-parenthesis, and each non-zero as a right-parenthesis. Link them
according to the legal way of matching parentheses, as shown in the top row, below:

0O 0 0 -1 0 0 +1 2 -1 +1 0
P NNDUPUPDETDTD ?

The leftmost 0 1s linked to the rightmost +1 , as indicated by the longest-overbar. The
left/right-parentheses form a (%,%)-random-walk. Since this random walk is recurrent, we
know that every position in x will be linked (except for a nullset of points x).
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Below each 0, write “P” or “N” as the 0 is linked to a positive or negative digit. And
below the other digits, write “E” or “D” as the digit is even or odd. So the upper name in X
is mapped to the lower name, a pointy € Y.

This map :X—Y carries the upstairs %, %, %, %, %) distribution to (%, %
stairs. It takes some arguing to show that independence is preserved.

The inverse map, ¢', views D and E as right-parentheses, and P and N as left. Above D,

write the odd digit +1 or -1, as this D is linked to Positive or Negative. O

11
> 40 Z)’ dOWH—

E.g: Markov Shifts. A Bernoulli process T,P has independence, P _o; L P;, whereas
a Markov process is a bit less aloof:

The infinite Past P _oy doesn’t provide any more information about
Tomorrow than Today did.

That is, the conditional distribution P;|P . _¢; equals P;|P,. Equivalently,

note

25: HPi 1Py = HEPi|IPw.o) = &T,P).

The simplest non-trivial Markov process (7,P : X, u) is over a two-letter alphabet {a, b},
and has transition graph (26), for some choice of transition probabilities s and c¢. The

\) C

Fic. 26: Call the transition proba-
bilities s := Prob(a—a) for stay, and
¢ = Prob(a—b) for change. These are
non-negative reals, and s+c = 1.

graph’s Markov matrix is

s ¢ where ¢ = 1 — s, and m;; denotes
M = [m ilij = [ 1 0] , the probability of going from state i to
state j.

If Today’s distribution on the two states is the probability-vector V := [pa pb], then To-

morrow’s is the product V- M. So a stationary process needs ¥M = V. This equation has

the unique solution p, = ﬁ and p, = 7. An example of computing the probability of a

word (or cylinder set; see [[Petersen, 5.1]]) in the process, is
Us(baaaba) = py - Mpa - Mag “ Maa * Map “Mpa = 721 5-5-¢-1.

The subscript on yu, indicates the dependence on the transition probabilities; let’s also mark
the mpt and call it 7';. Using (25), the entropy of our Markov map is

27: E(Ty) = pa-H(s,c) + pp- HL,0) v = 1'—+lc - [slog(s) + clog(c)] .
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Determinism and Zero-entropy

Irrational rotations have zero-entropy; let’s reveal this in two different ways.

Equip X := [0, 1) with “length” (Lebesgue) measure and wrap it into a circle. With “®”
denoting addition mod-1, have 7:XO be the rotation 7'(x) := x & @, where the rotation
number « is irrational. Pick distinct points y, zo € X, and let P be the partition whose two
atoms are the intervals [yy, zo) and [z, y9), wrapping around the circle.

The T-orbit of each point x is dense”'* in X. In particular, y, has dense orbit, so P

separates points —hence generates— under 7. Our goal, thus, is 8(T,P);0.

E.g: Rotations are deterministic. The forward T-orbit of each point is dense. This is
true for yy, and so the backward T,P-name of each x actually tells us which point x is. Le,
P c \/Z! 7P, which is our definition of “process T,P is deterministic . Our P being finite,
this determinism implies that &(T,P) is zero, by (19).

Counting names in a rotation. The PyV ...V P,_; partition places n translates of
points y, and of zy, cutting the circle into at most 2z intervals. Thus H(Py V...V P,_) <
log(2n). And %log(2n) - 0.

Alternatively, the below SMB-theorem implies, for an ergodic process 7,P, that the
number of length-n names is approximately 257-P)7; this, after discarding small mass from
the space. But the growth of n — 2n is sub-exponential and so, for our rotation, &(7,P)
must be zero. O

28: Shannon-McMillan-Breiman®'> Theorem (SMB-Thm).  Set E := &(T, P), where tuple
(T,P : X, ) is an ergodic process. Then the average information function

. ] n—0o0
28a: = Ip, ,(x) — E, foraexeX.

The functions f, = Ip, , converge to the constant function E both in the ' -norm and in
probability. %

Consequences. Recall that Pyy_,) means Py VP, Vv ...V P, ;, where P; := T/P. As
usual, Py, (x) denotes the Pyy_,-atom owning x.
Having deleted a nullset, we can restate (28a) to now say that Ve, Vx, Viyen:

28b: 12+ < (P mdx)) < 1/21E=¢ln,

This has the following consequence. Fixing a number 6 > 0, we consider any set with
u(B) > ¢ and count the number of n-names of points in B. The SMB-Thm implies

u
28c: Ve, Vargent, YB206 : |{n—names in B}| > plE-eln

9l4Fix an €>0 and an N > 1/e. Points x, T(x), ..., T"(x) have some two at distance less than %; say,
Dist(7T(x), T/(x)) < &, for some 0 < i < j < N. Since T is an isometry, & > Dist(x, T*(x)) > 0, where
k := j—i. So the T*-orbit of x is &-dense.

“I5In engineering circles, this is called the Almost-everywhere equi-partition theorem.

Filename: Problems/Dynamics/Entropy/entropy.latex



Prof. JLF King Determinism and Zero-entropy Page 15 of 32

E.g: Rank-1 has zero-entropy. There are several equivalent definitions for “rank-1 trans-
formation”, several of which are discussed in the introduction of [28]. (See [13, Chap. 6] and
[47] and [27] for examples of stacking constructions.)

A rank-1 transformation (T : X, ;1) admits a generating partition P and a sequence of
Rokhlin stacks §, € X, with heights going to co, and with u(S,) — 1. Moreover, each
of these Rokhlin stacks is P-monochromatic, that is, each level of the stack lies entirely in
some atom of P.

Taking a stack of some height 2n, let B=B, be the union of the bottom n levels of
the stack. There are at most n many length-n names starting in B,, by monochromaticity.
Finally, u(B,) is almost 3, so is certainly larger than ¢ := % Thus (28c) shows that our
rank-1 T has zero entropy. » O

Cautions on determinism’s relation to zero-entropy. A finite-valued process 7T,P has
zero-entropy iff P c \/ ! P j- Iterating gives

0 -1
\/o P, \/ P;, 1i.e, the future is measurable with respect to the past.

This was the case with the rotation, where a point’s past uniquely identified the point, thus
telling us its future.

While determinism and zero-entropy mean the same thing for finite-valued processes,
this fails catastrophically for real-valued (i.e, continuum-valued) processes, as shown by an
example of the author’s. A stationary real-valued process V. = ...V V, V; V, .. 1is
constructed in [39] which is simultaneously

The two valuess V), V; determine all

strongly deterministic : of V., future and past.

and non-consecutively independent. This latter means that for each bi-infinite increasing
integer sequence {n;}%__ with no consecutive pair (always 1+n; < nj,), then the list of

Jj=-00

random variables ...V, V, V, V,, ...1is an independent process.

Restricting the random variables to be countably-valued, how much of the example
survives? Joint work with Kalikow, [40], produced a countably-valued stationary V which
is non-consecutively independent as well as deterministic. (Strong determinism is ruled out, due
to cardinality considerations.) A side-effect of the construction is that V’s time-reversaln +— V_,
is not deterministic.

Pinsker Field. Define a collection of sets (the script Z is for “zero™)
29; ¥ =% =20 = De 1 &(T. (D. D)) = 0}.
Courtesy (24b), % is a T-invariant field, and

29" YQc Z: &(T,Q)=0.
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The Pinsker field of T*'° is this 2. It is maximal with respect to (29’). Unsurprisingly, the
Pinsker factor T | » has zero entropy, that is, &(T |'») = 0.
The asymptotic past of the 7,P process is called its tail field, where

Tail(T.P) = ﬁ VP
L=1

30: Theorem (Pinsker). Suppose P is a generating partition for an ergodic T. Then Tail(T,P)
equals Z7. In particular, all generating partitions for T have the same tail field. And the

future field of T,P, which is Z(T™) 2= 2(T), equals its tail field. 0

Ornstein theory

In 1970, Don Ornstein solved the long-standing problem of showing that entropy was a
complete isomorphism-invariant of Bernoulli transformations; that is, that two independent
processes with same entropy necessarily have the same underlying transformation. (Earlier,
Sinai had shown that two such Bernoulli maps were weakly isomorphic, that is, each isomorphic to a factor
of the other.)

Ornstein introduced the notion of a process being finitely determined, see [46] for a
definition, proved that a transformation 7 was Bernoulli IFF it had a finitely-determined
generator IFF every partition was finitely-determined with respect to T, and showed that
entropy completely classified the finitely-determined processes upto isomorphism.

The Pinsker-Field and K-automorphisms

Said differently, the zero-e trns are those whose Pinsker-field is everything. TBW e e o

<7l(‘Traditionally, this called the Pinsker algebra where, in this context, “algebra” is understood to mean
“o-algebra”.
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Topological Entropy

Adler, Konheim and McAndrew, in 19635, published the first definition of topological en-
tropy in the eponymous article [32]. Here, T:XO is a continuous self-map of a compact
topological space. The role of atoms is played by open sets. Instead of a finite partition,
one uses a finite”!” open-cover ¥V = (U j}le, i.e each patch U is open, and their union
U(¥) =X. (Henceforth, ‘cover’ means “open cover”.)

Let Card(7") be the minimum cardinality over all subcovers.

Card(?) :
(}{(7/) = 7-{top(%) :

Min {*¥ | V' c ¥ and U(”//’) = X}, and let
log(Card(¥)).

Analogous to the definitions for partitions, we prescribe

YNW = {VNW|Ve¥andWe¥W},
TY = {T'U)|Ue?}) and Ko.n = NVHNV...VFi;
W =V, if each # -patch is a subset of some ¥ -patch.

The T,7 —entropy is

31: E'Y) = &I, V) = Ep(T, V) = limsup L - Hiop(Ho ) -

And the topological entropy of T is
32: Eop(T) = supy Ep(T, 7)),  taken over all open covers ¥.

Thus &, counts, in some sense, the growth rate in the number of T-orbits of length 7.

Evidently, topological entropy is an isomorphism invariant. Two continuous maps
T:X—X and S:Y—Y are topologically conjugate (as isomorphism is called in this category) if
there exists a homeomorphism ¢: X—Y with YT = Sy.

33: Subadditive Lemma. Consider a sequences = (s;);” C [-o0, co] satisfying sy, < S + S¢,
for all k, € € Z. Then the following limit exists in [-co, co], and lim,,_, % = inf, i—l O

Topological entropy, or “top-ent” for short, satisfies many of the relations of measure-
entropy.

34: Lemma.

a: ¥V < W implies H(V) < HW ) and ET, V) < ET, ).

b: HVVH)SHI )Y+ HH).

c: H(T(Y)) < H(Y), with equality if T is surjective. Also, E(T, V") < H(V),

“1"Because we only work on a compact space, we can omit “finite”. Some generalizations of topological
entropy to non-compact spaces require that only finite open-covers be used; see [37].
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d: In(31), the lim, o = - H(¥o. ) exists.

e: Suppose T is a homeomorphism. Then &(T™, V) = ET, V), for each cover ¥ . Conse-
quently, Stop(T_l) = 8top(T)-

f: Suppose € is a collection of covers such that: For each cover ¥, there existsa ¥ € €
with V' > W . Then &, (T) equals the supremum of E,,(T, V"), just taken over those
vV eC.

g ForallC e N: &) (T") = € Eop(T). 0

Proof of (c). Let ¥ < ¥ be a min-cardinality subcover. Then 7%’ is a subcover of T7. So
Card(T?) < |T?| = |¥].
As for entropy, inequality (b) and the foregoing give H (%o _,) < H(Y) - n. ¢

Proof of (d). Set s, := H(%o.n)- Then s;p < sp + H(T*(Ho.0)) < i + 5¢, by (b) and (c),
and so the Subadditive Lemma (33), applies. ¢

Proof of (2). ~ WLOG, ¢ = 3. Given ¥ a cover, triple it to V=¥ OTY NT>Y; so
Vieo.m [T V() = Viao.an TH(¥). Thus H(T, ¥, N) = H(T,¥,3N), extending no-
tation. Part (d) and sending N — oo, gives &(T3, %) = 3 - H(T, V).

Lastly, take covers such that E(T°, €0) — &, (T?) and E(T, Z*) — Ep(T), as k—co.
Define ¥® = ¢® v 2®_ Apply the above to ¥ ¥, then send k—co. ¢

Using a metric

From now on, our space is a compact metric space (X, d). Dinaburg [33], and Bowen [34],[35],
gave alternative, equivalent, definitions of top-ent, in the compact metric-space case, that
are often easier to work with than covers. Bowen gave a definition also when X is not
compact,”'® see [35] and [22, chap. 7].

Metric preliminaries. An &-ball-cover comprises finitely many balls, all of radius e.
Since our space is compact, every cover ¥ has a Lebesgue number £>0. le, for each
z € X, the Bal(z, ) lies entirely inside at least one ¥ -patch. (In particular, there is an &-ball-cover
which refines ¥.) Let LEB(?") be the supremum of the Lebesgue numbers. Courtesy (34f) we
can

Fix a “universal” list ¥V < #® < ..., with ¥® a +-ball-cover. For

35 every T:X—X, then, the lim; &(T, ¥'®) computes Eyp(T).

“18When X is not compact, the definitions need not coincide; e.g [37]. And topologically-equivalent metrics,
but which are not uniformly equivalent, may give the same 7 different entropies, [22, P. 171].
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An e-microscope. Three notions are useful in examining a metric space (X, m) at
scale £. Subset A C X is an &-separated-set, if m(z,7’) > & for all distinct z,7" € A.
Subset F' C X is e-spanning if Vx € X, 4z € F with m(x, z) < &.

Lastly, a cover 7 is e-small if Diam(U) < &, foreach U € 7.

You take the High Road and I’ll take the Low Road. There are several routes to com-
puting top-ent, some via maximization, others, minimization. Our foregoing discussion
computed Eyp(T) by a family of sizes fi(n) = f'(n), depending on a parameter k which
specifies the fineness of scale. (In (35), this k is an integer; in the original definition, an open cover.)
Define two numbers:

36: tf(k) :=limsup and L/(k) :=liminf of %log(fk(n)).

—00

Finally, let &/(T) = supktf(k). If the limit exists in (36) then we write L/ (k) for the
common value.
The A-K-M definition used the size fy (n) := Card(#. ), where

Card(#’) := Minimum cardinality of a subcover from % .

Here are three metric-space sizes f.(n):

Sep(n,e) = Maximum cardinality of a d,-e-separated set.
Spn(n, ) := Minimum cardinality of a d,-&-spanning set.
Cov(n, &) := Minimum cardinality of a d,-e-small cover.

These use a list (d,), , of progressively finer metrics on X, where

37: All-Roads-lead-to-Rome Theorem. Fix ¢ and let # be any d-g-small cover. Then
i Yn: Cov(n,2e) < Spn(n,e) < Sep(n,e) < Card(Ho.n)-
ii: Take a cover ¥ and a§ < Les(¥'). Then Vn: Card(#. ) < Cov(n, 9).
iiis The limit L°(g) = lim, % log(Cov(n, €)) exists in [0, co).

by defn

iv: ES(T) = EN(T) = E°Y(T) = E%3YT) Eiop(T). 0

Pf of (1). Take F C X, a min-cardinality d,-e-spanning set. So | J..r D, = X, where

note

n—1 . .
D, = dy-Balz,e) == ) , T7(Bal(T’z, &)).
-
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This ¥ = {D.}, is a cover, and it is d,-2e-small. Thus Cov(n,2¢) < |Y| = |F|.

For any metric, a maximal e-separated-set is automatically e-spanning; adjoin a putative
unspanned point to get a larger separated set.

Let A be a max-cardinality d,-g-separated set. Take %, a min-cardinality subcover
of #o.n- For each z € A, pick a ¢-patch C, 5 z. Could some pair x,y € A pick the
same C? Well, write C = ﬂ;:é T'j(Wj), with each W; € #. For every j € [0..n), then,
d(T/(x), T/(y)) < Diam(W,) < e. Hence d,(x,y) < &; so x = y. Accordingly, the z = C,
map is injective, whence |A| < |%. ¢

Pf of (i1). Choose a min-cardinality d,-6-small cover ¢". For each C € % and j € [0 .. n),
the d-Diam(7(C)) < §. So there is a ¥ -patch V¢ ; D T/(C). Hence

note n—1 .
Yo 3 () T7Vep > C.

J=0

Thus %o ., < €. So Card(.) < Card(¥) < |€| = Cov(n, ). ¢

Pf of (iii). To upper-bound Cov(k+{, &) let ¥ and # be min-cardinality e-small covers,
respectively, for metrics d; and d,. Then ¥ N TY(#) is a e-small for di,,. Consequently
Cov(k+(, &) < Cov(k,e) - Cov(l,e). Thus n — log(Cov(n, £)) is subadditive. ¢

Pf of (iv). Pick a 7" from the list in (35), choose some 2¢ < LEB(?") followed by an &-small
W from (35). Pushing n — oo gives

—s —s
LMo <L e

LSP(e) < LS%P(e)

38: LCad(y) < L°Y(2¢) < < LS.

Now send ¥ and #  along the (35) list. ¢

Pretension. Topological entropy takes its values in [0, co]. A useful corollary of (38)
can be stated in terms of any Distance(, -) which topologizes [0, co] as a compact interval.

For each continuous T:X—X on a compact metric-space, the

—~S
Distance( L e'O(s), L5P(g)) goes to zero as £\0. Consequently, we can
39: pretend that the

LSP(e) = lim 1log(Sep(n, &))
limit exists, in arguments that subsequently send e\,0. Ditto for LS""(g).

We’ll use this during the proof of the Variational Principle. But first, here are two entropy
computations which illustrate the efficacy in having several characterizations of top-ent.
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E.g: Ep(Isometry) = 0. Suppose (T : X, d) is a distance-preserving map of a compact
metric-space. Fixing &, a set is d,-g-separated IFF it is d-e-separated. Thus Sep(n, &)

. —Sep .
does not grow with n. Soeach L (¢) is zero. ]

E.g: Topological Markov Shifts. Imagine ourselves back in the days when computer
data is stored on large reels of fast-moving magnetic tape. One strategy to maximize the
density of binary data stored is to not put timing-marks (which take up space) on the tape. This
has the defect that if we write, say, 577 consecutive 1-bits, the tape-reader may erroneously
count 578 copies of 1. We sidestep this flaw by first encoding our data so as to avoid the
115771 word, then writing to tape.

Generalize this to a finite alphabet Q and a finite list % of disallowed Q-words. Extend
each word to a common length K+1; now .# c QX*!. The resulting “K-step TMS” (topo-
logical Markov shift) is the shift on the set of doubly-co Q-names having no substring in .%.
In the above magnetic-tape example, K = 576. Making it more realistic, suppose some
string of zeros, say 00 3740, is also forbidden”!” Extending to length 577, we get 2°=8 new
disallowed words of form 00 374 0b,b,b5.

We recode to a 1-step TMS (just called a TMS or a subshift of finite type) over the alphabet
P := QX. Each outlawed Q-word wow; - - - wg engenders a length-2 forbidden P-word
(wo, ..., wg_1)(wy,...,wg). The resulting TMS is topologically conjugate to the original
K-step. The allowed length-2 words can be viewed as the edges in a directed-graph and
the set of points x € X is the set of doubly-co paths through the graph. Once trivialities
removed, this X is a Cantor set and the shift 7:XO is a homeomorphism.

The Golden Shift. As the simplest example, suppose our magnetic-tape is constrained
by the Markov graph, Fic. 40, that we studied measure-theoretically in (26).

We want to store the text of The Declaration of Independence on our magnetic tape.”’
Imagining that English is a stationary process, we’d like to encode English into this Golden
TMS as efficiently as possible. We seek a shift-invariant measure pu on Xgog of maximum
entropy, should such exist.

Fic. 40: Ignoring the labels on the edges,

for the moment, the Golden shift, T,
C acts on the space of doubly-infinite paths
through this graph. The space can be
represented as a subset Xgola C {a, b}Z,
namely, the set of sequences with no two
consecutive b letters.

View P={a, b} as the time-zero partition on Xg.q; that is, name x=...X_;X¢X{X; ..., is in

“19Perhaps the 0-bad-length, 574, is shorter than the 1-bad-length because, say, s take less tape-space
than 1s and so —being written more densely— cause ambiguity sooner.
920 which, by Rights, should be stored as a Bernoulli process. . .

Filename: Problems/Dynamics/Entropy/entropy.latex



Prof. JLF King Using a metric Page 22 of 32

atom b IFF letter X, is “b”. Any measure u gives conditional probabilities

m@la) = s, ubla) = c,

note note

u@lb)y =1, ub |b) =0.
But recall, &T) = H(P; | Pw.0)) < H(P; | Pg). So among all measures that make the

conditional distribution Pla equal (s, ¢), the unique one maximizing entropy is the (s, ¢)-
Markov-process. Its entropy, derived in (27), is

41: f(s) = 3= H(s, 1-5) = 5= - [slog(s) + [1-s]log(1—s)] .

Certainly f(0) = f(1) = 0, so f’s maximum occurs at the (it turns out) unique point s

. . ;) .~ 145
where the derivative f'(’s) equals zero. This's = =5~

supportable by the Golden Shift is

. Plugging in, the maximum entropy

. _ 2 145 2 3-V5 2
42: MaxEnt = = [F52 log(22) + 57 log(25)] -

Exponentiating, the number of u-typical n-names grows like G", where

-1+V5 3-V5

42 G = [_1 +2\/5_]5ﬁ . [3_2\/5_]5

This expression”! looks unpleasant to simplify —it isn’t even obviously an algebraic num-
ber— and yet topological entropy will reveal its familiar nature. This, because the Varia-
tional Principle (proved in the next section) says that the top-ent of a system is the supremum
of measure-entropies supportable by the system.

%

Top-ent of the Golden Shift. For a moment, let’s work more generally on an arbi-
trary subshift (a closed, shift-invariant subset) X C QF, where Q is a finite alphabet. Here, the
transformation is always the shift —but the space is varying— so agree to refer to the top-ent
as Eiop(X). Let Namesx(n) be the number of distinct words in the set {x Iyo ) | x € X}. Note
that a metric inducing the product-topology on Q7 is

43: d(x,x') = #Iml’ for the smallest |m| with X,, # X),.

44: Lemma. Consider a subshift X. Then the lim,,_, %log(NamesX(n)) exists in [0, oo],
and equals Ep(X). O

Proof. With € € (0, 1) fixed, two n-names are d,-e-separated |IFF they are not the same
name. Hence Sep(n, €) = Namesy(n). ¢

“2I A popular computer-algebra-system was not, at least under my inexpert tutelage, able to simplify this.
However, once top-ent gave the correct answer, it was able to detect the equality.
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To compute Ei,p(Xgowa), declare that a word is “golden” if it appears in some x €
Xgow- Each [n+1]-golden word ending in a has form wa, where w is n-golden. An [n+1]-
golden word ending in b, must end in ab and so has form wab, where w is [n—1]-golden.
Summing up,

Namesy,  (n+1) = Namesy,  (n) + Namesy,  (n—1).

This is the Fibonacci recurrence, and indeed, these are the Fibonacci numbers, since Namesy,, ,,(0) = 1
and Namesy, (1) = 2. Consequently, we have that

— 15
Namesy, (7) ~ Const-A", Where d = 5= s the
© Golden Ratio.

So the sesquipedalian number G from (42') is simply A, and Eyop(Xgoa) = log(A).
Since log(d) ~ 0.694, each thousand bits written on tape (subject to the “no bb substrings”
constraint) can carry at most 694 bits of information.

Top-ent of a general TMS. A (finite) digraph G engenders a TMS T': Xs— X, as well
as a {0, 1}-valued adjacency matrix A=A, where g ; is the number of directed-edges from
state i to j. (Here, each a;; is 0 or 1.) The (i, j)-entry in power A" is automatically the number
of length-n paths from i to j. Employing the matrix-norm [[M|| := %, ;|m; |, then,

[|A"]| = Namesx(n).
Happily Gelfand’s formula“? applies: For an arbitrary (square) complex matrix,

45: lim ||A"|"/" = SpecRad(A).

This righthand side, the spectral radius of A, means the maximum of the absolute values
of A’s eigenvalues. So the top-ent of a TMS is thus the

46: Eop(Xs) = SpecRad(Ag) = Max{|e| | e is an eigenvalue of Ag}.

The (a, b)-adjacency matrix of Fic. 40is [} ], whose eigenvalues are 2 and -1/A.

Labeling edges. Interpret (s, c, 1) simply as edge-labels in (40). The set of doubly-co
paths can also be viewed as a subset Y04 C {5, C, 1}%, and it too is a TMS. The shift on Ygo
is conjugate (topologically isomorphic) to the shift on Xgo4, SO they a fortiori have the same

top-ent, log(A). The (s, ¢, 1)-adjacency matrix is

(1) (1) g]. Its | - |-largest eigenvalue is still A,
as it must.

Now we make a new graph. We modify (40) by manufacturing a total of two s-edges,
seven c-edges, and three edges 1, 15, 15. Give these 2+7+3 edges twelve distinct labels.
We could compute the resulting TMS-entropy from the corresponding 12x12 adjacency

matrix. Alternatively, look at the (a,b)-adjacency matrix A := [3 ]]. The roots of its
characteristic polynomial are 1 +V22. Hence &, of this 12-symbol TMS is log(1 +V22).
O

“22See [54, 10.13] or [53, Spectral_radius].
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The variational principle

Let M = M(X, d) be the set of Borel probability measures, and I(T) := M(T : X, d) the
set of T-invariant u € M. Assign

EntSup(7T) := sup{E,(T) | € M(T)}.

47: Variational Principle (Goodson). EntSup(T) = &Eop(T). O

This says that top-ent is the top entropy —if there is a measure y which realizes the
supremum. There doesn’t have to be. Choose a sequence of metric-systems (S : Y, my)
whose entropies strictly increase Eip(S) /" L to some limitin (0, co]. Let (S «: Yoo, M) be
the identity-map on a 1-point space. Define a new system (7': X, d), where X = | Jic1 . o) Yi-
Have T(x) := Si(x), for the unique k£ with ¥; > x. As for the metric, on Y} let d be a
scaled version of my, so that the d-Diam(Y) is less than 1/2*. Finally, for points in distinct
components, x € Y; and z € Y;, decree that d(x,z) := [2* —2%. Our T is continuous,
and is a homeomorphism if each of the Sy is. Certainly E,,(T) = L > Eiop(Sk), for
every k € [1 .. co].

If L is finite then there is no measure y of maximal entropy; for u must give mass to
some Y}; this pulls the entropy below L, since there are no compensatory components with
entropy exceeding L.

In contrast, when L = oo then there is a maximal-entropy measure (put mass 1/2/ on
some component Yy, where k; 7co swiftly); indeed, there are continuum-many maximal-
entropy measures. But there is no””* ergodic measure of maximal entropy.

For a concrete L=co example, let S, be the shift on [1 .. k2.

Topology on Mi. Let’s arrange our tools for establishing the Variational Principle. 1 fol-
low Misiurewicz’s proof, adapted from the presentations in [22] and [11].

Equip M with the weak-* topology.”* An A C X is u-nice if its topological boundary
0(A) is u-null. And a partition is u-nice if each atom is.

48: Prop'n. Ifay — p and A C X is u-nice, then a;(A) — u(A). o
Proof. Define operator % (D) := limsup, a,(D). It suffices to show that | % (A) < u(A) |-

For since A€ is ,u—IECC too, then % (A¢) < u(A°). Thus lim; a;(A) exists, and equals u(A).
Because C := A is closed, the continuous functions fy “\, 1¢ pointwise, where

fv(x) =1 - Min(N-d(x,C), 1).

“2The ergodic measures are the extremepoints of MM(T); call them Merg(T). This M(T) is the set
of barycenters obtained from Borel probability measures on Migg(7); see [53, Krein-Milman_theorem,
Choquet_theory]. In this instance, what explains the failure to have an ergodic maximal-entropy measure?
Let 4 be an invariant ergodic measure on Y. These measures do converge to the one-point (ergodic) proba-
bility measure, feo, 0N Y. But the map p +— &,(7') is not continuous at fle.

“2*Measures a; — u IFF ffdozL — ff du, for each continuous f:X—R. This metrizable topology
makes 9t compact. Always, I(T') is a non-void compact subset; see [[Petersen, §6]].
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By the Monotone Convergence theorem, then, f fvdu 2, u(C). And u(C) = u(A), since

A is nice. Fixing N, then, it suffices to establish [% (A) < f I d,u]. But fy is continuous,
SO

ffN du = limsup ffN day > limsup flA day = %A). ¢
L—o L—oo
49: Corollary. Suppose «;, — u and partition P is p-nice. Then H,, (P) — H,(P). 0

The diameter of partition P is Max,cp Diam(A).

50: Prop’n. Take u € M and € > 0. Then there exists a u-nice partition with Diam(P) < €.

Proof. Centered at an x, the uncountably many balls {Bal(x, r) | r € (0, &)} have disjoint
boundaries. So all but countably many are u-nice; pick one and call it B,. Compact-
ness gives a finite nice cover, say, {By,..., By}, at different centers. Then the partition
P:=(4,,...,A;) is nice,” where A; := By \ U'J‘-;} B;. ¢

Here is a consequence of Jensen’s Inequality.

51: Distropy-averaging Lemma. For u,v € 9, a partition R, and a number ¢ € [0, 1]:

t-H,R + - HMR < Hypyer(R). O

Strategy for EntSup(T') > Eop(T). Choose an&>0. For L = 1,2, 3, .., take a maximal
(L, &)-separated-set F; C X, then define

F =F, = limsupL_,oo%-log(lFLl).

Let ¢1() be the equi-probable measure on F;; each point has weight 1/F;|. We will con-
struct our desired invariant measure u from the Cesaro averages

1 ¢
= <. T
L L Zfe[o L) PL.

which get more and more invariant.

52: Lemma. Letu be any weak-+ accumulation point of the above {a,}{. (Automatically, u
is T-invariant.) Then &E,(T) > F. Indeed, if Q is any p-nice partition with Diam(Q) < &, then
E(T,Q)>F. ¢

“2For any two sets B,B’ C X, the union dB U 4B’ is a superset of the three boundaries
d(BUB’), (BN B’), d(B\ B).
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Tactics. Asusual, Qp_n) means Qy vV Q; V...V Qu_y. Our goal is

s VN: F < + - H(Qu.w)-

Fix N and P := Qy_ ), and a 6>0. It suffices to verify: VoL > N,

?
52'; Hlog(F) < 6 + 3 Ha(P),

since this and (49) will prove (x): Pushing L — oo along the sequence that produced u es-

sentially sends LhS(52’) to F, courtesy (39). And RhS(52’) goesto 6 + # - H,(P), by (49),

since P is u-nice. Descending ¢ “\ 0, hands us the needed (). O

Proof’*® of (52"). Since L is frozen, agree to use ¢ for the ¢, probability measure.
Our d;-e-separated set F;, has at most one point in any given atom of Qy _ ), thereupon

log(I1FLl) = Hy(Qpo..1)) -

Regardless of the “offset” K € [0.. N), we can always fit C = L%J many N-blocks into
[0..L). Denote by 4(K) := [K .. K+CN), this union of N-blocks, the good set of indices.
Unsurprisingly, Z(K) = [0.. L) \ 4(K) is the bad index-set. Therefore,

Bad(K) Good(K)

53: Ho(Qro.r)) < H(Vjezm Q) + Ho(V jexy Q)) -

Certainly Bad(K) < 3Nlog(|Q]). So ﬁ 2.kepo.. v Bad(K) < 3TNlog(lQl). This is less than ¢,
since L is large. Applying ﬁ 2.kefo0..n) to (53) now produces

54: Lo log(Fl) < 6+ 7 ). Good(K).

Note Vcqu T/(Q) = Vicp.oyTK*M(P). So Good(K) < Y. H(T**VP). This
latter, by definition, equals Y. Hrr-en,)(P). We conclude that

ﬁ Z Good(K) < ﬁ Z Z Hrrsavy(P)
X K ¢

< ﬁ Z Hre,(P), by adjoining a few translates of P,
te[0..L)

< # -H,, (P), by the Distropy-averaging Lemma, (51),

since @y is the average % >, T!. Thus (54) implies (52'), our goal. ¢

920The idea is to mostly fill [0.. L) with N-blocks, starting with a offset K € [0.. N). Averaging over the
offset will create a Cesaro average over each N-block. Averaging over the N-blocks will allow us to compute
distropy with respect to the averaged measure, ;.
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Proof of EntSup(T') < Eop(T). Fix a T-invariant u. For partition Q = (By, ..., Bg),
choose a compact set Ay C By with u(B; \ Ay) small.””’ Letting D = [||;A;]° and
P:=(D,A,...,Ax), we can have made H(P | Q) as small as desired. Courtesy (23b),
then, we only need consider partitions of the form that P has.

Open-cover ¥ := (U, ..., Uk) has patches U := D U A;. What atoms of, say, Py _3),
can the intersection Uy N T7'(U,) N T2(Us) touch? Only the eight atoms

(Dords) N T (DorA) N T2(DorAs).
Thus #P[o oy S 27 #’7{0 .m- (Here, *() counts the number of non-void atoms/patches.) So
YH,Po.p) < 1+ Yog™o.m) < 1+ 1+80(T);

this last inequality, when 7 is large. The upshot: &E,(T) < 2 + Eiop(T).
Applied to a power T, this asserts that E,(T%) < 2 + Ep(T"). Thus

ET) < F+8q(T),

using (24d) and using (34g). Now coax £ — co. ¢

Three recent results

Having given an survey of older results in measure-theoretic entropy and in topological
entropy, let us end this survey with a brief discussion of a few recent results, chosen from
many.

Ornstein-Weiss: Finitely-observable invariant. In a landmark paper [8, 2007], Orn-
stein and Weiss show that all “finitely observable” properties of ergodic processes are se-
cretly entropy; indeed, they are continouous functions of entropy. This was generalized by
Gutman and Hochman [9]; some of the notation below is from their paper.

Here is the setting. Consider an ergodic process, on a non-atomic space, taking on only
finitely many values in N; let 4" be some family of such processes. An observation scheme
is a metric space (2, d) and a sequence of functions S = (S,);", where S, maps Nx.” . XN
into Q. On a point ¥ € N*, the scheme converges if

55: n k= Sn(-xlv-XZ,"',xn)

converges in 2. And on a particular process X, say that S converges, if S converges on
a.e Xin X.

A function J: % —Q is isomorphism invariant if, whenver the underlying transforma-
tions of two processes X, X’ € € are isomorphic, then J(X) = J(X’). Lastly, say that S
“converges to J 7, if for each X € €, scheme S converges to the value J(X).

“2’This can be done, since y is automatically a regular measure.

Filename: Problems/Dynamics/Entropy/entropy.latex



Prof. JLF King Three recent results Page 28 of 32

The work of David Bailey [38, 1976], a student of Ornstein, produced an observation
scheme for entropy. The Lempel-Ziv algorithm [43] was another entropy observer, with
practical application.

Ornstein and Weiss provided entropy schemes in [41] and [42]. Their recent paper
“Entropy is the only finitely-observable invariant” |8, 2007], give a converse, a uniqueness
result.

56: Theorem (Ornstein, Weiss). Suppose J is a finitely observable function, defined on all
ergodic finite-valued processes. If J is an isomorphism invariant, then J is a continouous
function of the entropy. ¢

Yonatan Gutman and Michael Hochman, in [9], significantly extend the Ornstein-Weiss
result, by proving that it holds even when the isomorphism invariant, J, is well-defined
only on certain subclasses of the set of all ergodic processes. In particular they obtain the
following result on three classes of zero-entropy transformations.

57: Theorem (Gutman, Hochman). Suppose J() is a finitely observable invariant on one of
the following classes:

it The Kronecker systems; the class of systems with pure point spectrum.
ii The zero-entropy mild mixing processes.

iiir The zero-entropy strong mixing processes.

Then J() is constant. O

Entropy of actions of free groups. Consider (G, %), a topological group and its Borel
field (sigma-algebra). Let & X 2" be the field on G X X generated by the two coordinate-
subfields. A map

3 Y:GxX—X is measurable if y' (27) ¢ 9xZ . Use y*(x) for y(g, x).

This map (x) is a (measure-preserving) group action if Yg,h € G: ¢ oy = y8", and each
Y8: X— X is measure preserving.

This encyclopedia article has only discussed entropy for Z-actions, i.e, when G = Z.
The ergodic theorem, our definition of entropy, and large parts of ergodic theory, involve
taking averages (of some quantity of interest) over larger and larger “pieces of Time”. In Z, we
typically use the intervals 7, := [0..n). When G is ZxZ, we might average over squares
I, xX1,.

The amenable groups are those which possess, in a certain sense, larger and larger av-
eraging sets. Parts of ergodic theory have been carried over to actions of amenable groups,
e.g [49] and [51]. Indeed, much of the Bernoulli theory was extended to certain amenable
groups by Ornstein and Weiss, [50].

The stereotypical example of a non-amenable group, is a free group (on more than one
generator). But recently, Lewis Bowen [10] succeeded in extending the definition of entropy
to actions of finite-rank free groups.
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58: Theorem (Lewis Bowen).  Let G by a finite-rank free group. Then two Bernoulli G-
actions are isomorphic IFF they have the same entropy. O

The paper introduces a new isomorphism invariant, the “f invariant”, and shows that,
for Bernoulli actions, the f invariant agrees with entropy, that is, with the distropy of the
independent generating partition.

Conclusion

Ever since the pioneering work of Shannon, and of Kolmogorov and Sinai, entropy has been
front and center as a major tool in Ergodic Theory. Simply mentioning all the substantial
results in entropy theory would dwarf the length of this encyclopedia article many times
over. And, as the above three results (cherry-picked out of many) show, Entropy shows no sign
of fading away. ..
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