

# Entropy

Jonathan L.F. King  
University of Florida, Gainesville FL 32611-2082, USA  
squash@math.ufl.edu  
Webpage <http://www.math.ufl.edu/~squash/>  
4 May, 2008 (at 0-900:20)

**Prolegomenon.** The word ‘*entropy*’ was coined by Rudolf Julius Emanuel Clausius in 1867, in [2], referring to the thermodynamic notion in physics.

Our focus here, however, will be the notion in measurable-dynamics and topological-dynamics. (Entropy in differentiable-dynamics,<sup>1</sup> would require an article by itself.) Shannon’s 1948 paper [3] on Information Theory, then Kolmogorov’s [4] and Sinai’s [5] generalization to dynamical systems, will be our starting point. I will stay in the one-dimensional case, where the acting-group is  $\mathbb{Z}$ .

## §Bird’s-eye view

|                                                       |    |                                                                 |    |
|-------------------------------------------------------|----|-----------------------------------------------------------------|----|
| Prolegomenon . . . . .                                | 1  | Cautions on determinism’s relation to zero-entropy . . . . .    | 15 |
| Glossary . . . . .                                    | 1  | Pinsker Field . . . . .                                         | 15 |
| Entropy example: <i>How many questions?</i>           | 3  | Ornstein theory . . . . .                                       | 16 |
| Distribution entropy . . . . .                        | 3  | The Pinsker-Field and K-automorphisms . . . . .                 | 16 |
| The $\eta$ function . . . . .                         | 4  | Topological Entropy . . . . .                                   | 17 |
| Binomial coefficients . . . . .                       | 5  | Using a metric . . . . .                                        | 18 |
| A gander at Shannon’s Noisy Channel theorem . . . . . | 6  | Metric preliminaries . . . . .                                  | 18 |
| Noisy Channel . . . . .                               | 6  | You take the High Road and I’ll take the Low Road . . . . .     | 19 |
| The information function . . . . .                    | 7  | E.g.: $\mathcal{E}_{\text{top}}(\text{Isometry}) = 0$ . . . . . | 21 |
| Entropy of a Process . . . . .                        | 9  | E.g.: <i>Topological Markov Shifts</i> . . . . .                | 21 |
| Bernoulli processes . . . . .                         | 10 | The variational principle . . . . .                             | 24 |
| Entropy of a Transformation . . . . .                 | 10 | Topology on $\mathfrak{M}$ . . . . .                            | 24 |
| Entropy is continuous . . . . .                       | 11 | Three recent results . . . . .                                  | 27 |
| Entropy is not continuous . . . . .                   | 11 | Ornstein-Weiss: Finitely-observable invariant . . . . .         | 27 |
| E.g.: <i>Meshalkin’s map</i> . . . . .                | 12 | Entropy of actions of free groups . . . . .                     | 28 |
| E.g.: <i>Markov Shifts</i> . . . . .                  | 13 | Conclusion . . . . .                                            | 29 |
| Determinism and Zero-entropy . . . . .                | 14 |                                                                 |    |
| E.g.: <i>Rotations are deterministic</i> . . . . .    | 14 |                                                                 |    |
| E.g.: <i>Rank-1 has zero-entropy</i> . . . . .        | 15 |                                                                 |    |

**Glossary.** Some of the following definitions refer to the “Notation” paragraph immediately below. Use *mpt* for ‘*measure-preserving transformation*’.

A **measure space**  $(X, \mathcal{X}, \mu)$  is a set  $X$ , a **field** (that is, a  $\sigma$ -algebra)  $\mathcal{X}$  of subsets of  $X$ , and a countably-additive measure  $\mu: \mathcal{X} \rightarrow [0, \infty]$ . (We often just write  $(X, \mu)$ , with the field implicit.) For a collection  $\mathcal{C} \subset \mathcal{X}$ , use  $\text{Fld}(\mathcal{C})$  for the smallest field  $\supset \mathcal{C}$ . The number  $\mu(B)$  is the “ $\mu$ -mass of  $B$ ”.

A **measure-preserving map**  $\psi: (X, \mathcal{X}, \mu) \rightarrow (Y, \mathcal{Y}, \nu)$  is a map  $\psi: X \rightarrow Y$  such that the inverse image of each  $B \in \mathcal{Y}$  is in  $\mathcal{X}$ , and  $\mu(\psi^{-1}(B)) = \nu(B)$ . A **(measure-preserving) transformation** is a measure-preserving map  $T: (X, \mathcal{X}, \mu) \rightarrow (X, \mathcal{X}, \mu)$ . Condense this notation to  $(T: X, \mathcal{X}, \mu)$  or  $(T: X, \mu)$ .

A **probability space** is a measure space  $(X, \mu)$  with  $\mu(X) = 1$ ; this  $\mu$  is a **probability measure**. All our maps/transformations in this article are on probability spaces. A **factor map**

$$\psi: (T: X, \mathcal{X}, \mu) \rightarrow (S: Y, \mathcal{Y}, \nu)$$

<sup>1</sup>For instance, see [24], [26], [18] and [15].

is a measure-preserving map  $\psi: X \rightarrow Y$  which intertwines the transformations,  $\psi \circ T = S \circ \psi$ . And  $\psi$  is an **isomorphism** if –after deleting a nullset in each space– this  $\psi$  is a bijection and  $\psi^{-1}$  is also a factor map.

A measure-theoretic statement holds **almost everywhere**, abbreviated **a.e.**, if it holds off of a nullset, mass-zero set.<sup>②</sup> For example,  $B \overset{\text{a.e.}}{\supset} A$  means that  $\mu(B \setminus A)$  is zero. The *a.e.* will usually be implicit.

A **probability vector**  $\vec{v} = (v_1, v_2, \dots)$  is a list of non-negative reals whose sum is 1. We generally assume that probability vectors and partitions (see below) have *finitely* many components. We write “*countable* probability vector/partition”, when finitely or denumerably many components are considered.

A **partition**  $P = (A_1, A_2, \dots)$  splits  $X$  into pairwise disjoint subsets  $A_i \in \mathcal{X}$  so that the disjoint union  $\bigsqcup_i A_i$  is all of  $X$ . Each  $A_i$  is an **atom** of  $P$ . Use  $|P|$  or  $\#P$  for the number of atoms. When  $P$  partitions a probability space, then it yields a probability vector  $\vec{v}$ , where  $v_j := \mu(A_j)$ . Lastly, use  $P\langle x \rangle$  to denote the  $P$ -atom that owns  $x$ .

**Fonts.** We use the font  $\mathcal{H}$ ,  $\mathcal{E}$ ,  $\mathcal{I}$  for *distribution-entropy*, *entropy* and the *information function*. In contrast, the script font  $\mathcal{ABC} \dots$  will be used for collections of sets; usually subfields of  $\mathcal{X}$ . Use  $\mathbb{E}(\cdot)$  for the (conditional) expectation operator.

**Notation.**  $\mathbb{Z}$  = integers.  $\mathbb{Z}_+$  = positive integers, and  $\mathbb{N}$  = natural numbers<sup>③</sup> =  $\{0, 1, 2, \dots\}$ . Use  $\lceil \cdot \rceil$  and  $\lfloor \cdot \rfloor$  for the **ceiling** and **floor** functions;  $\lfloor \cdot \rfloor$  is also called the “greatest-integer function”. For an interval  $J := [a, b) \subset [-\infty, +\infty]$ , let  $[a .. b)$  denote the **interval of integers**  $J \cap \mathbb{Z}$  (with a similar convention for closed and open intervals). E.g,  $(e .. \pi) = \{3\}$ .

For subsets  $A$  and  $B$  of the same space,  $\Omega$ , use  $A \subset B$  for inclusion and  $A \subsetneq B$  for *proper* inclusion. The difference set  $B \setminus A$  is  $\{\omega \in B \mid \omega \notin A\}$ . Employ  $A^c$  for the complement  $\Omega \setminus A$ . Since we work in a probability space, if we let  $x := \mu(A)$ , then a convenient convention is to have

$$x^c := 1 - x,$$

since then  $\mu(A^c)$  equals  $x^c$ .

Use  $A \Delta B$  for the **symmetric difference**  $[A \setminus B] \cup [B \setminus A]$ . For a collection  $\mathcal{C} = \{E_j\}_j$  of sets in  $\Omega$ , let the **disjoint union**  $\bigsqcup_j E_j$  or  $\bigsqcup(\mathcal{C})$  represent the union  $\bigcup_j E_j$  and also assert that the sets are pairwise disjoint.

Use “ $\forall_{\text{large } n}$ ” to mean: “ $\exists n_0$  such that  $\forall n > n_0$ ”. To refer to lefthand side of an equation 17, use LhS(17); do analogously for RhS(17), the righthand side.

---

<sup>②</sup>Eugene Gutkin once remarked to me that the problem with Measure Theory is... that you have to say “almost everywhere”, almost everywhere.

<sup>③</sup>Some well-meaning folk use  $\mathbb{N}$  for  $\mathbb{Z}_+$ , saying ‘*Nothing could be more natural than the positive integers*’. And this is why  $0 \in \mathbb{N}$ .

**Entropy example: How many questions?** Imagine a dartboard, Fig. 1, split in five regions,  $A, \dots, E$ , with known probabilities. Blindfolded, you throw a dart at the board. What is the expected number,  $V$ , of Yes/No questions needed to ascertain the region in which the dart landed?

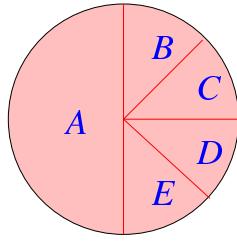


FIG. 1: This dartboard is a probability space with a 5-set partition. The atoms have probabilities  $\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}$ . This probability distribution will be used later in Meshalkin's example on page 13.

Solve this by always dividing the remaining probability in half. 'Is it  $A$ ?'; if Yes, then  $V = 1$ . Else: 'Is it  $B$  or  $C$ ?' —if Yes, then 'Is it  $B$ ?' —if No, then the dart landed in  $C$ , and  $V=3$  was the number of questions. Evidently  $V=3$  also for regions  $B, D, E$ . Using "log" to denote base-2 logarithm<sup>24</sup>, the expected number of questions<sup>25</sup> is thus

$$2: \quad \mathbb{E}(V) = \frac{1}{2} \cdot 1 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = \sum_{j=0}^4 p_j \cdot \log(\frac{1}{p_j}) \stackrel{\text{note}}{=} 2.$$

Letting  $\vec{v} := (\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8})$  be the probability vector, we can write this expectation as

$$\mathbb{E}(V) = \sum_{x \in \vec{v}} \eta(x).$$

Here,  $\eta: [0, 1] \rightarrow [0, \infty)$  is the important function<sup>26</sup>

$$3: \quad \begin{aligned} \eta(x) &:= x \cdot \log(1/x); \quad \text{so extending by continuity gives} \\ \eta(0) &= 0. \end{aligned}$$

An interpretation of " $\eta(x)$ " is the number of questions needed to winnow down to an event of probability  $x$ .

## Distribution entropy

Given a probability vector  $\vec{v}$ , define its **distribution entropy** as

$$4: \quad \mathcal{H}(\vec{v}) := \sum_{x \in \vec{v}} \eta(x).$$

<sup>24</sup>In this paper, unmarked logs will be to base-2. In entropy theory, it does not matter much what base is used, but base-2 is convenient for computing entropy for messages described in bits.

When using the natural logarithm, some people refer to the unit of information as a **nat**. In this paper, I have picked bits, rather than nats.

<sup>25</sup>This is holds when each probability  $p$  is a reciprocal power of two. For general probabilities, the "expected number of questions" interpretation holds in a weaker sense: Throw  $N$  darts independently at  $N$  copies of the dartboard. Efficiently ask Yes/No questions to determine where *all*  $N$  darts landed. Dividing by  $N$ , then sending  $N \rightarrow \infty$ , will be the  $p \cdot \log(\frac{1}{p})$  sum of (2).

<sup>26</sup>There does not seem to be a standard name for this function. I use  $\eta$ , since an uppercase  $\eta$  looks like an  $H$ , which is the letter that Shannon used to denote what I am calling distribution-entropy.

In this paper, I will use the term **distropy** for ‘*distribution entropy*’ and will reserve **entropy** for the corresponding dynamical concept, when there is a notion of *time* involved. Getting ahead of ourselves, the *entropy* of a stationary process is the asymptotic average value that its distropy decays to, as we look at larger and larger finite portions of the process.

An equi-probable vector  $\vec{v} := (\frac{1}{K}, \dots, \frac{1}{K})$  evidently has  $\mathcal{H}(\vec{v}) = \log(K)$ . On a probability space, the “distropy of partition  $P$ ”, written  $\mathcal{H}(P)$  or  $\mathcal{H}(A_1, A_2, \dots)$ , shall mean the distropy of probability vector  $j \mapsto \mu(A_j)$ .

A (finite) partition necessarily has finite distropy. A *countable* partition can have finite distropy, e.g.  $\mathcal{H}(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots) = 2$ . One could also have infinite distropy: Consider a piece  $B \subset X$  of mass  $1/2^N$ . Splitting  $B$  into  $2^k$  many equal-mass atoms gives an  $\eta$ -sum of  $2^k \cdot \frac{k+N}{2^k 2^N}$ . Setting  $k = k_N := 2^N - N$  makes this  $\eta$ -sum equal 1; so splitting the pieces of  $X = \bigsqcup_{N=1}^{\infty} B_N$ , with  $\mu(B_N) = \frac{1}{2^N}$ , yields an  $\infty$ -distropy partition.

**The  $\eta$  function.** Our  $\eta(x) = x \cdot \log(1/x)$  function<sup>27</sup> has vertical tangent at  $x=0$ , maximum at  $1/e$  and, when graphed in nats, slope -1 at  $x=1$ .

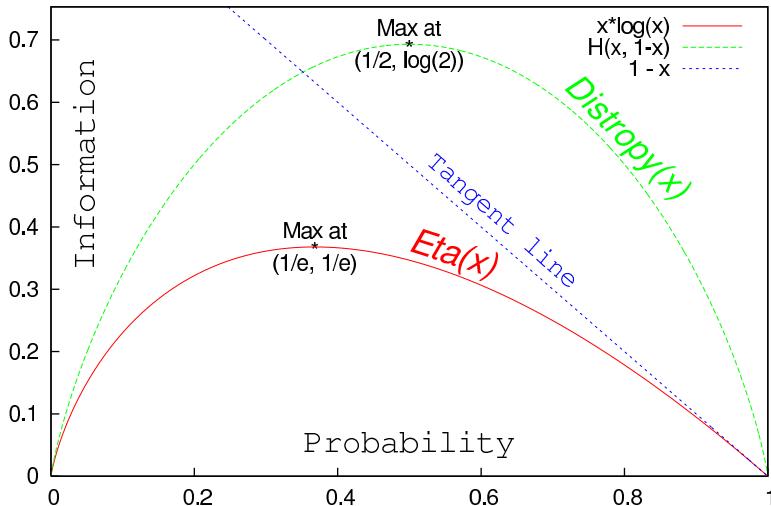


FIG. 5: Using natural log, here are the graphs of:  
 $\eta(x)$  in solid red.  
 $H(x, x^c)$  in dashed green.  
 $1-x$  in dotted blue.  
Both  $\eta(x)$  and  $H(x, x^c)$  are strictly convex-down. The  $1-x$  line is tangent to  $\eta(x)$  at  $x=1$ .

Consider partitions  $P$  and  $Q$  on the same space  $(X, \mu)$ . Their *join*, written  $P \vee Q$ , has atoms  $A \cap B$ , for each pair  $A \in P$  and  $B \in Q$ . They are *independent*, written  $P \perp Q$ , if  $\mu(A \cap B) = \mu(A)\mu(B)$  for each  $A, B$  pair. We write  $P \succcurlyeq Q$ , and say that “ $P$  refines  $Q$ ”, if each  $P$ -atom is a subset of some  $Q$ -atom. Consequently, each  $Q$ -atom is a union of  $P$ -atoms.

Recall, for  $\delta$  a real number, our convention that  $\delta^c$  means  $1 - \delta$ , in analogy with  $\mu(B^c)$  equaling  $1 - \mu(B)$  on a probability space.

<sup>27</sup>Curiosity: Just in this footnote we compute distropy in **nats**, that is, using natural logarithm. Given a small probability  $p \in [0, 1]$  and setting  $x := 1/p$ , note that  $\eta(p) = \frac{\log(x)}{x} \approx 1/\pi(x)$ , where  $\pi(x)$  denotes the number of prime numbers less-equal  $x$ . (This approximation is a weak form of the Prime Number Theorem.) Is there any actual connection between the ‘approximate distropy’ function  $\mathcal{H}_{\pi}(\vec{p}) := \sum_{p \in \vec{p}} 1/\pi(1/p)$  and Number Theory, other than a coincidence of growth rate?

**6: Distropy fact.** For partitions  $P, Q, R$  on probability space  $(X, \mu)$ :

- a:  $\mathcal{H}(P) \leq \log^{\#P}$ , with equality IFF  $P$  is an equi-mass partition.
- b:  $\mathcal{H}(Q \vee R) \leq \mathcal{H}(Q) + \mathcal{H}(R)$ , with equality IFF  $Q \perp R$ .
- c: For  $\delta \in [0, \frac{1}{2}]$ , the function  $\delta \mapsto \mathcal{H}(\delta, \delta^c)$  is strictly increasing.
- d:  $R \leq P$  implies  $\mathcal{H}(R) \leq \mathcal{H}(P)$ , with equality IFF  $R \stackrel{\text{a.e.}}{\equiv} P$ . ◊

**Proof.** Use the strict concavity of  $\eta()$ , together with Jensen's Inequality. ♦

**Remark.** Although we will not discuss it in this paper, most distropy statements remain true with 'partition' replaced by 'countable partition of finite distropy'. □

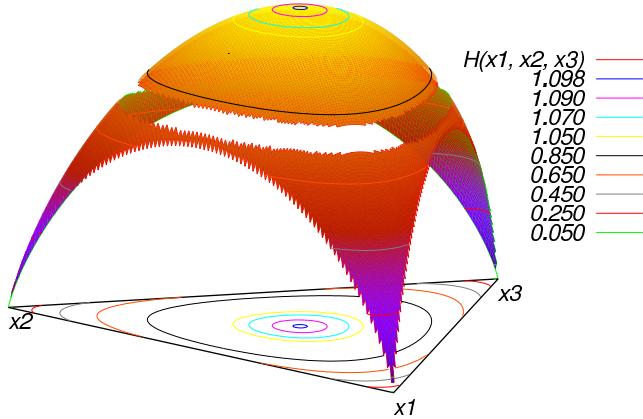


FIG. 7: Using natural log: The graph of  $\mathcal{H}(x_1, x_2, x_3)$  in barycentric coordinates; a slice has been removed, between  $z = 0.745$  and  $z = 0.821$ . The three arches are copies of the distropy curve from (5).

**Binomial coefficients.** The dartboard gave an example where distropy arises in a natural way. Here is a second example.

For a small  $\delta > 0$ , one might guess that the binomial coefficient  $\binom{n}{\delta n}$  grows asymptotically (as  $n \rightarrow \infty$ ) like  $2^{\varepsilon n}$ , for some small  $\varepsilon$ . But what is the correct relation between  $\varepsilon$  and  $\delta$ ? Well, Stirling's formula  $n! \approx [n/e]^n$  gives

$$\frac{n!}{[\delta n]! \cdot [\delta^c \cdot n]!} \approx \frac{n^n}{[\delta n]^{\delta n} \cdot [\delta^c \cdot n]^{\delta^c n}} = 1/[\delta^{\delta n} \cdot [\delta^c]^{\delta^c n}]. \quad (\text{Recall } \delta^c = 1 - \delta.)$$

Thus  $\frac{1}{n} \cdot \log \binom{n}{\delta n} \approx \mathcal{H}(\delta, \delta^c)$ . But by means of the above distropy inequalities, we get an inequality true for all  $n$ , not just asymptotically.

**8: Binomial Lemma.** Fix a  $\delta \in [0, \frac{1}{2}]$  and let  $\mathbf{H} := \mathcal{H}(\delta, \delta^c)$ . Then for each  $n \in \mathbb{Z}_+$ :

$$9: \quad \sum_{j \in [0.. \delta n]} \binom{n}{j} \leq 2^{\mathbf{H} n}. \quad \text{span style="color: red;">◊$$

**Proof.** Let  $X \subset \{0, 1\}^n$  be the set of  $\vec{x}$  with  $\#\{i \in [1..n] \mid x_i = 1\} \leq \delta \cdot n$ . On  $X$ , let  $P_1, P_2, \dots$  be the coordinate partitions; e.g.  $P_7 = (A_7, A_7^c)$ , where  $A_7 := \{\vec{x} \mid x_7 = 1\}$ . Weighting each point by  $\frac{1}{|X|}$ , the uniform distribution on  $X$ , gives that  $\mu(A_7) \leq \delta$ . So  $\mathcal{H}(P_7) \leq H$ , by (6c). Finally, the join  $P_1 \vee \dots \vee P_n$  separates the points of  $X$ . So

$$\log(\#X) = \mathcal{H}(P_1 \vee \dots \vee P_n) \leq \mathcal{H}(P_1) + \dots + \mathcal{H}(P_n) \leq Hn, \quad \diamond$$

making use of (6a,b). And  $\#X$  equals LhS(9).

### A gander at Shannon's Noisy Channel theorem

We can restate the Binomial lemma using the **Hamming metric** on  $\{0, 1\}^n$ ,

$$\text{Dist}(\vec{x}, \vec{y}) := \#\{i \in [1..n] \mid x_i \neq y_i\}.$$

Use  $\text{Bal}(\vec{x}, r)$  for the open radius- $r$  ball centered at  $\vec{x}$ , and

$$\overline{\text{Bal}}(\vec{x}, r) := \{\vec{y} \mid \text{Dist}(\vec{x}, \vec{y}) \leq r\}$$

for the closed ball. The above lemma can be interpreted as saying that

$$9': \quad |\overline{\text{Bal}}(\vec{x}, \delta n)| \leq 2^{\mathcal{H}(\delta, \delta^c) \cdot n}, \quad \text{for each } \vec{x} \in \{0, 1\}^n.$$

**10: Corollary.** Fix  $n \in \mathbb{Z}_+$  and  $\delta \in [0, \frac{1}{2}]$ , and let  $H := \mathcal{H}(\delta, \delta^c)$ . Then there is a set  $C \subset \{0, 1\}^n$ , with  $\#C \geq 2^{[1-H]n}$ , that is **strongly  $\delta n$ -separated**. I.e.  $\text{Dist}(\vec{x}, \vec{y}) > \delta n$  for each distinct pair  $\vec{x}, \vec{y} \in C$ .  $\diamond$

**Noisy Channel.** Shannon's theorem says that a noisy channel has a **channel capacity**. Transmitting *above* this speed, there is a minimum error-rate (depending how much "above") that no error-correcting code can fix. Conversely, one can transmit *below* –but arbitrarily close to– the channel capacity, and encode the data so as to make the error-rate less than any given  $\varepsilon$ . We use (10) to show the existence of such codes, in the simplest case where the noise<sup>28</sup> is a binary independent-process (a "Bernoulli" process, in the language later in this article).

We have a channel which can pass one bit per second. Alas, there is a fixed noise-probability  $\nu \in [0, \frac{1}{2}]$  so that a bit in the channel is perturbed into the other value. Each perturbation is independent of all others. Let  $H := \mathcal{H}(\nu, \nu^c)$ . The value  $[1-H]$  bits-per-second is the **channel capacity** of this noise-afflicted channel.

---

<sup>28</sup>The noise-process is assumed to be *independent* of the signal-process. In contrast, when the perturbation is highly dependent on the signal, then it is sometimes called **distortion**.

**Encoding/Decoding.** Encode using an “*k,n-block-code*”; an injective map  $F: \{0, 1\}^k \rightarrow \{0, 1\}^n$ . The source text is split into consecutive  $k$ -bit blocks. A block  $\vec{x} \in \{0, 1\}^k$  is encoded to  $F(\vec{x}) \in \{0, 1\}^n$  and then sent through the channel, where it comes out perturbed to  $\vec{a} \in \{0, 1\}^n$ . The *transmission rate* is thus  $k/n$  bits-per-second.

For this example, we fix a radius  $r > 0$  to determine the decoding map,

$$D_r: \{0, 1\}^n \rightarrow \{0\text{ops}\} \sqcup \{0, 1\}^k.$$

We set  $D_r(\vec{a})$  to  $\vec{z}$  if there is a *unique*  $\vec{z}$  with  $F(\vec{z}) \in \overline{\text{Bal}}(\vec{a}, r)$ ; else, set  $D_r(\vec{a}) := 0\text{ops}$ .

We can think of the noise as a  $\{0, 1\}$ -independent-process, with  $\text{Prob}(1) = \nu$ , which is added mod-2 to the signal-process. Suppose we can arrange that the set  $\{F(\vec{x}) \mid \vec{x} \in \{0, 1\}^k\}$  of codewords, is a strongly  $r$ -separated-set. Then

11: *The probability that a block is mis-decoded is the probability, flipping a  $\nu$ -coin  $n$  times, that we get more than  $r$  many Heads.*

12: **Theorem (Shannon).** *Fix a noise-probability  $\nu \in [0, \frac{1}{2}]$  and let  $\mathbf{H} := \mathcal{H}(\nu, \nu^c)$ . Consider a rate  $R < [1 - \mathbf{H}]$  and an  $\varepsilon > 0$ . Then  $\forall_{\text{large } n}$  there exists a  $k$  and a code  $F: \{0, 1\}^k \rightarrow \{0, 1\}^n$  so that: The  $F$ -code transmits bits at faster than  $R$  bits-per-second, and with error-rate  $< \varepsilon$ .  $\diamond$*

**Proof.** Let  $\mathbf{H}' := \mathcal{H}(\delta, \delta^c)$ , where  $\delta > \nu$  was chosen so small that

$$13: \quad \delta < \frac{1}{2} \quad \text{and} \quad 1 - \mathbf{H}' > R.$$

Pick a large  $n$  for which

$$14: \quad \frac{k}{n} > R, \quad \text{where } k := \lfloor [1 - \mathbf{H}'] \cdot n \rfloor.$$

By (10), there is a strongly  $\delta n$ -separated-set  $C \subset \{0, 1\}^n$  with  $\#C \geq 2^{[1 - \mathbf{H}']n}$ . So  $C$  is big enough to permit an injection  $F: \{0, 1\}^k \hookrightarrow C$ . Courtesy (11), the probability of a decoding error is that of getting more than  $\delta n$  many Heads in flipping a  $\nu$ -coin  $n$  times. Since  $\delta > \nu$ , the Weak Law of Large Numbers guarantees –once  $n$  is large enough– that this probability is less than the given  $\varepsilon$ .  $\diamond$

## The information function

We use  $\mathbf{P} = (A_1, \dots)$ ,  $\mathbf{Q} = (B_1, \dots)$ ,  $\mathbf{R} = (C_1, \dots)$  for partitions, and  $\mathcal{F}, \mathcal{G}$  for fields.

With  $\mathfrak{C}$  a (finite or infinite) family of subfields of  $\mathcal{X}$ , their *join*  $\bigvee_{\mathcal{G} \in \mathfrak{C}} \mathcal{G}$  is the smallest field  $\mathcal{F}$  such that  $\mathcal{G} \subset \mathcal{F}$ , for each  $\mathcal{G} \in \mathfrak{C}$ . A partition  $\mathbf{Q}$  can be interpreted also as a field; namely, the field of unions of its atoms. A join of denumerably many partitions will be interpreted as a field, but a join of *finitely* many,  $\mathbf{P}_1 \vee \dots \vee \mathbf{P}_N$ , will be viewed as a partition *or* as a field, depending on context.

For an  $A \subset X$ , use  $\mathbf{1}_A: X \rightarrow \{0, 1\}$  for its *indicator function*;  $\mathbf{1}_A(x) = 1$  IFF  $x \in A$ . The **information function** of partition  $\mathsf{P}$ , a map  $\mathcal{I}_{\mathsf{P}}: X \rightarrow [0, \infty)$ , is

$$15: \quad \mathcal{I}_{\mathsf{P}}(\cdot) := \sum_{A \in \mathsf{P}} \log\left(\frac{1}{\mu(A)}\right) \cdot \mathbf{1}_A(\cdot).$$

It has been defined so that its expectation is the distropy of  $\mathsf{P}$ .

$$\mathbb{E}(\mathcal{I}_{\mathsf{P}}) = \int_X \mathcal{I}_{\mathsf{P}}(\cdot) d\mu = \mathcal{H}(\mathsf{P}).$$

With respect to a subfield  $\mathcal{F}$ , let  $\mu(A | \mathcal{F})$  be the **conditional probability** function; that is, the conditional expectation  $\mathbb{E}(\mathbf{1}_A | \mathcal{F})$ . This engenders the **conditional information function**,

$$16: \quad \begin{aligned} \mathcal{I}_{\mathsf{P}|\mathcal{F}}(x) &:= \sum_{A \in \mathsf{P}} \log\left(\frac{1}{\mu(A | \mathcal{F})(x)}\right) \cdot \mathbf{1}_A(x). \quad \text{Its integral} \\ \mathcal{H}(\mathsf{P} | \mathcal{F}) &:= \int \mathcal{I}_{\mathsf{P}|\mathcal{F}} d\mu, \quad \text{is the } \mathbf{conditional \ distropy} \text{ of } \mathsf{P} \text{ on } \mathcal{F}. \end{aligned}$$

Conditioning on a positive-mass set  $B$ , let  $\mathsf{P}|B$  be the probability vector  $A \mapsto \frac{\mu(A \cap B)}{\mu(B)}$ . Conditional distropy, when conditioning on a partition, equals

$$17: \quad \mathcal{H}(\mathsf{P} | \mathsf{Q}) = \sum_{B \in \mathsf{Q}} \mathcal{H}(\mathsf{P}|B) \cdot \mu(B) = \sum_{A \in \mathsf{P}, B \in \mathsf{Q}} \log\left(\frac{1}{\mu(A \cap B) / \mu(B)}\right) \cdot \mu(A \cap B).$$

Write  $\mathcal{G}_j \nearrow \mathcal{F}$  to indicate that fields  $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \dots$  are nested, and that  $\text{Fld}(\bigcup_1^\infty \mathcal{G}_j) = \mathcal{F}$ , a.e. The Martingale Convergence Theorem, [20, P. 103], gives (c), below.

18: **Conditional-distropy fact.** Consider partitions  $\mathsf{P}, \mathsf{Q}, \mathsf{R}$  and fields  $\mathcal{F}$  and  $\mathcal{G}_j$ . Then

- a:  $0 \leq \mathcal{H}(\mathsf{P} | \mathcal{F}) \leq \mathcal{H}(\mathsf{P})$ , with equality IFF  $\mathsf{P} \stackrel{\text{a.e.}}{\subset} \mathcal{F}$ , respectively,  $\mathsf{P} \perp \mathcal{F}$ .
- b:  $\mathcal{H}(\mathsf{Q} \vee \mathsf{R} | \mathcal{F}) \leq \mathcal{H}(\mathsf{Q} | \mathcal{F}) + \mathcal{H}(\mathsf{R} | \mathcal{F})$ .
- c: Suppose  $\mathcal{G}_j \nearrow \mathcal{F}$ . Then  $\mathcal{H}(\mathsf{P} | \mathcal{G}_j) \searrow \mathcal{H}(\mathsf{P} | \mathcal{F})$ .
- d:  $\mathcal{H}(\mathsf{Q} \vee \mathsf{R}) = \mathcal{H}(\mathsf{Q} | \mathsf{R}) + \mathcal{H}(\mathsf{R})$ .
- d':  $\mathcal{H}(\mathsf{Q} \vee \mathsf{R}_1 | \mathsf{R}_0) = \mathcal{H}(\mathsf{Q} | \mathsf{R}_1 \vee \mathsf{R}_0) + \mathcal{H}(\mathsf{R}_1 | \mathsf{R}_0)$ . ◊

Imagining our dartboard (1) divided by superimposed partitions  $\mathsf{Q}$  and  $\mathsf{R}$ , equality (18d) can be interpreted as saying: ‘*You can efficiently discover where the dart landed in both partitions, by first asking efficient questions about  $\mathsf{R}$ , then –based on where you landed in  $\mathsf{R}$ – asking intelligent questions about  $\mathsf{Q}$ .*’

## Entropy of a Process

Consider an transformation  $(T : X, \mu)$  and partition  $\mathbf{P} = (A_1, A_2, \dots)$ . Each “time”  $n$  determines a partition  $\mathbf{P}_n := T^n \mathbf{P}$ , whose  $j^{\text{th}}$ -atom is  $T^{-n}(A_j)$ . The **process**  $T, \mathbf{P}$  refers to how  $T$  acts on the subfield  $\bigvee_0^\infty \mathbf{P}_n \subset \mathcal{X}$ . (An alternative view of a process is as a stationary sequence  $V_0, V_1, \dots$  of random variables  $V_n : X \rightarrow \mathbb{Z}_+$ , where  $V_n(x) := j$  because  $x$  is in the  $j^{\text{th}}$ -atom of  $\mathbf{P}_n$ .)

Write  $\mathcal{E}(T, \mathbf{P})$  or  $\mathcal{E}^T(\mathbf{P})$  for the “**entropy** of the  $T, \mathbf{P}$  process”. It is the limit of the **conditional-distropy-numbers**

$$c_n := \mathcal{H}(\mathbf{P}_0 \mid \mathbf{P}_1 \vee \mathbf{P}_2 \vee \dots \vee \mathbf{P}_{n-1}).$$

This limit exists since  $\mathcal{H}(\mathbf{P}) = c_1 \geq c_2 \geq \dots \geq 0$ .

Define the **average-distropy-number**  $\frac{1}{n}h_n$ , where

$$h_n := \mathcal{H}(\mathbf{P}_0 \vee \mathbf{P}_1 \vee \dots \vee \mathbf{P}_{n-1}).$$

Certainly  $h_n = c_n + \mathcal{H}(\mathbf{P}_1 \vee \dots \vee \mathbf{P}_{n-1}) = c_n + h_{n-1}$ , since  $T$  is measure preserving. Induction gives  $h_n = \sum_{j=1}^n c_j$ . So the Cesàro averages  $\frac{1}{n}h_n$  converge to the entropy.

**19: Theorem.** *The entropy of process  $(T, \mathbf{P} : X, \mathcal{X}, \mu)$  equals*

$$\lim_{n \rightarrow \infty} \frac{1}{n} \mathcal{H}(\mathbf{P}_0 \vee \dots \vee \mathbf{P}_{n-1}) = \lim_{n \rightarrow \infty} \mathcal{H}(\mathbf{P}_0 \mid \bigvee_1^n \mathbf{P}_j) = \mathcal{H}(\mathbf{P}_0 \mid \bigvee_1^\infty \mathbf{P}_j).$$

Both limits are non-increasing. The entropy  $\mathcal{E}^T(\mathbf{P}) \geq 0$ , with equality IFF  $\mathbf{P} \stackrel{\text{ac}}{\subset} \bigvee_1^\infty \mathbf{P}_j$ . And  $\mathcal{E}^T(\mathbf{P}) \leq \mathcal{H}(\mathbf{P})$ , with equality IFF  $T, \mathbf{P}$  is an independent process.  $\diamond$

**Generators.** We henceforth only discuss *invertible* mpts, that is, when  $T^{-1}$  is itself an mpt. Viewing the atoms of  $\mathbf{P}$  as “letters”, then, each  $x \in X$  has a  $T, \mathbf{P}$ -**name**  $\dots x_{-1} x_0 x_1 x_2 \dots$ , where  $x_n$  is  $\mathbf{P}\langle T^n(x) \rangle$ , the  $\mathbf{P}$ -letter owning  $T^n(x)$ .

A partition  $\mathbf{P}$  **generates** (the whole field) under  $(T : X, \mu)$ , if  $\bigvee_\infty^\infty T^n \mathbf{P} =_\mu \mathcal{X}$ . It turns out<sup>99</sup> that  $\mathbf{P}$  generates IFF  $\mathbf{P}$  **separates points**. That is, after deleting a ( $T$ -invariant) nullset, distinct points of  $X$  have distinct  $T, \mathbf{P}$ -names.

A finite set  $[1..L]$  of integers, our **alphabet**, yields the **shift space**  $X := [1..L]^\mathbb{Z}$  of doubly-infinite sequences  $x = (\dots x_{-1} x_0 x_1 \dots)$ . The **shift**  $T : X \rightarrow X$  acts on  $X$  by

$$T(x) := [n \mapsto x_{n+1}].$$

Automatically, then, the **time-zero partition**  $\mathbf{P}$  separates points, under the action of the shift. This  $L$ -atom partition has  $\mathbf{P}\langle x \rangle = \mathbf{P}\langle y \rangle$  IFF  $x_0 = y_0$ . So no matter what shift-invariant measure is put on  $X$ , the time-zero partition will generate under the action of  $T$ .

<sup>99</sup>I am now at liberty to reveal that our  $X$  has always been a **Lebesgue space**, that is, measure-isomorphic to an interval of  $\mathbb{R}$  together with countably many point-atoms (points with positive mass). The equivalence of *generating* and *separating* is a technical theorem, due to Rokhlin.

Assuming  $\mu$  to be Lebesgue is not much of a limitation. For instance, if  $\mu$  is a finite measure on any Polish space, then  $\mu$  extends to a Lebesgue measure on the  $\mu$ -completion of the Borel sets. To not mince words: All spaces are Lebesgue spaces unless you are actively *looking* for trouble...

**Time reversibility.** A transformation need not be isomorphic to its inverse. Nonetheless, the average-distropy-numbers show that  $\mathcal{E}(T^{-1}, \mathbf{P}) = \mathcal{E}(T, \mathbf{P})$ ; although this is not obvious from the conditioning-definition of entropy. Alternatively,

$$\begin{aligned} 20: \quad \mathcal{H}(\mathbf{P}_0 \mid \bigvee_1^n \mathbf{P}_j) &= \mathcal{H}(\mathbf{P}_0 \vee \dots \vee \mathbf{P}_n) - \mathcal{H}(\mathbf{P}_1 \vee \dots \vee \mathbf{P}_n) \\ &= \mathcal{H}(\mathbf{P}_{-n} \vee \dots \vee \mathbf{P}_0) - \mathcal{H}(\mathbf{P}_{-n} \vee \dots \vee \mathbf{P}_1) = \mathcal{H}(\mathbf{P}_0 \mid \bigvee_{-1}^{-n} \mathbf{P}_j). \end{aligned} \quad \square$$

**Bernoulli processes.** A probability vector  $\vec{v} := (v_1, \dots, v_L)$  can be viewed as a measure on alphabet  $[1 \dots L]$ . Let  $\mu_{\vec{v}}$  be the resulting product measure on  $X := [1 \dots L]^{\mathbb{Z}}$ , with  $T$  the shift on  $X$  and  $\mathbf{P}$  the time-zero partition. The independent process  $(T, \mathbf{P} : X, \mu_{\vec{v}})$  is called, by ergodic theorists, a **Bernoulli process**. Not necessarily consistently, we tend to refer to the underlying *transformation* as a **Bernoulli shift**.

The  $(\frac{1}{2}, \frac{1}{2})$ -Bernoulli and the  $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ -Bernoulli have different process-entropies, but perhaps their underlying transformations are isomorphic? Prior to the Kolmogorov-Sinai definition of entropy<sup>10</sup> of a *transformation*, this question remained unanswered.

## Entropy of a Transformation

The Kolmogorov-Sinai definition of the entropy of an mpt is

$$\mathcal{E}(T) := \sup\{\mathcal{E}^T(Q) \mid Q \text{ a partition on } X\}.$$

Certainly entropy is an isomorphism invariant—but is it useful? After all, the supremum of *distropies* of partitions is always infinite (on non-atomic spaces) and one might fear that the same holds for entropies. The key observation (restated in (23c) and proved below) was this, from [4, Kol 1958] and [5, Sinai 1959].

21: **Kolmogorov-Sinai theorem.** *If  $\mathbf{P}$  generates under  $T$ , then  $\mathcal{E}(T) = \mathcal{E}(T, \mathbf{P})$ .* ◊

Thereupon the  $(\frac{1}{2}, \frac{1}{2})$  and  $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$  Bernoulli-shifts are *not* isomorphic, since their respective entropies are  $\log(2) \neq \log(3)$ .

Wolfgang Krieger later proved a converse to the Kolmogorov-Sinai theorem.

22: **Krieger Generator Thm (1970).** *Suppose  $T$  ergodic. If  $\mathcal{E}(T) < \infty$ , then  $T$  has a generating partition. Indeed, letting  $K$  be the smallest integer  $K > \mathcal{E}(T)$ , there is a  $K$ -atom generator.* <sup>11</sup> ◊

**Proof.** See Rudolph [21], or [[de la Rue, §5.1]], where Krieger's theorem is stated in terms of joinings. ♦

<sup>10</sup>This is sometimes called **measure(-theoretic) entropy** or (perhaps unfortunately) **metric entropy**, to distinguish it from topological entropy. Tools known prior to entropy, such as *spectral* properties, did *not* distinguish the two Bernoulli-shifts; see [[Lemanczyk]] for the definitions.

<sup>11</sup>It is an easier result, undoubtedly known much earlier, that every ergodic  $T$  has a *countable* generating partition—possibly of  $\infty$ -distropy.

**Entropy is continuous.** Given *ordered* partitions  $Q = (B_1, \dots)$  and  $Q' = (B'_1, \dots)$ , extend the shorter by null-atoms until  $|Q| = |Q'|$ . Let  $Fat := \bigsqcup_j [B_j \cap B'_j]$ ; this set should have mass close to 1 if  $Q$  and  $Q'$  are almost the same partition. Define a new partition

$$Q \Delta Q' := \{Fat\} \sqcup \{B_i \cap B'_j \mid \text{with } i \neq j\}.$$

(In other words, take  $Q \vee Q'$  and coalesce, into a single atom, all the  $B_k \cap B'_k$  sets.) Topologize the space of partitions by saying<sup>12</sup> that  $Q^{(L)} \rightarrow Q$  when  $\mathcal{H}(Q \Delta Q^{(L)}) \rightarrow 0$ . Then (23b) says that process-entropy varies continuously with varying the partition.

**23: Lemma.** Fix a mpt  $(T : X, \mu)$ . For partitions  $P, Q, Q'$ , define  $R := Q \Delta Q'$  and let  $\delta := \mathcal{H}(R)$ . Then

a:  $|\mathcal{H}(Q) - \mathcal{H}(Q')| \leq \delta$ . (Distropy varies continuously with the partition.)

b:  $|\mathcal{E}^T(Q) - \mathcal{E}^T(Q')| \leq \delta$ . (Process-entropy varies continuously with the partition.)

c: For all partitions  $Q \subset \text{Fld}(T, P)$ :  $\mathcal{E}^T(Q) \leq \mathcal{E}^T(P)$ . ♦

**Proof of (a).** Evidently  $Q' \vee R = Q' \vee Q = Q \vee R$ . So  $\mathcal{H}(Q') \leq \mathcal{H}(Q \vee R) \leq \mathcal{H}(Q) + \delta$ . ♦

**Proof of (b).** As above,  $\mathcal{H}(\bigvee_1^N Q'_j) \leq \mathcal{H}(\bigvee_1^N Q_j) + \mathcal{H}(\bigvee_1^N R_j)$ . Sending  $N \rightarrow \infty$  gives  $\mathcal{E}^T(Q') \leq \mathcal{E}^T(Q) + \mathcal{E}^T(R)$ . Finally,  $\mathcal{E}^T(R) \leq \mathcal{H}(R)$  and so  $\mathcal{E}^T(Q') \leq \mathcal{E}^T(Q) + \delta$ . ♦

**Proof of (c).** Let  $K := |Q|$ . Then there is a sequence of  $K$ -set partitions  $Q^{(L)} \rightarrow Q$  with  $Q^{(L)} \leq \bigvee_{-L}^L P_\ell$ . By above,  $\mathcal{E}^T(Q^{(L)}) \rightarrow \mathcal{E}^T(Q)$ , so showing that  $\mathcal{E}^T(\bigvee_{-L}^L P_\ell) \leq \mathcal{E}^T(P)$  will suffice. Note that

$$h_N := \mathcal{H}\left(\bigvee_{n=0}^{N-1} T^n(\bigvee_{-L}^L P_\ell)\right) = \mathcal{H}\left(\bigvee_{j=-L}^{N-1+L} P_j\right).$$

So  $\frac{1}{N}h_N \leq \frac{1}{N}\mathcal{H}\left(\bigvee_0^{N-1} P_j\right) + \frac{1}{N} \cdot 2L \cdot \mathcal{H}(P)$ . Now send  $N \rightarrow \infty$ . ♦

**Entropy is not continuous.** The most common topology placed on the space,  $\Omega$ , of mpts is the *coarse topology*<sup>13</sup> that Halmos discusses in his “little red book”, [14].

The Rokhlin lemma [21, P. 33] implies that the isomorphism-class of *each* ergodic mpt is *dense* in  $\Omega$ , (e.g, see [14, P. 77]) disclosing that the  $S \mapsto \mathcal{E}(S)$  map is exorbitantly discontinuous.

Indeed, the failure happens already for process-entropy with respect to a fixed partition. A Bernoulli process  $T, P$  has positive entropy. Take mpts  $S_n \rightarrow T$ , each isomorphic to an irrational rotation. Then each  $\mathcal{E}(S_n, P)$  is zero, as shown in the later section on *Determinism and Zero-entropy*.

<sup>12</sup>On the set of ordered  $K$ -set partitions (with  $K$  fixed) this convergence is the same as:  $Q^{(L)} \rightarrow Q$  when  $\mu(Fat(Q^{(L)}, Q)) \rightarrow 1$ .

An alternative approach is the **Rokhlin metric**,  $\text{Dist}(P, Q) := \mathcal{H}(P \mid Q) + \mathcal{H}(Q \mid P)$ , which has the advantage of working for *unordered* partitions.

<sup>13</sup>I.e,  $S_n \rightarrow T$  IFF  $\forall A \in \mathcal{X} : \mu(S_n^{-1}(A) \Delta T^{-1}(A)) \rightarrow 0$ ; this is a metric-topology, since our probability space is countably generated. This can be restated in terms of the unitary operator  $U_T$  on  $\mathbb{L}^2(\mu)$ , where  $U_T(f) := f \circ T$ . Namely,  $S_n \rightarrow T$  in the coarse topology IFF  $U_{S_n} \rightarrow U_T$  in the strong operator topology.

*Further results.* When  $\mathcal{F}$  is a  $T$ -invariant subfield, agree to use  $T \upharpoonright_{\mathcal{F}}$  for “ $T$  restricted to  $\mathcal{F}$ ”, which is a factor (see Glossary) of  $T$ . Transformations  $T$  and  $S$  are **weakly isomorphic** if each is isomorphic to a factor of the other.

The foregoing entropy tools make short shrift of the following.

24: Entropy lemma. Consider  $T$ -invariant subfields  $\mathcal{G}_j$  and  $\mathcal{F}$ .

- a: Suppose  $\mathcal{G}_j \nearrow \mathcal{F}$ . Then  $\mathcal{E}(T \upharpoonright_{\mathcal{G}_j}) \nearrow \mathcal{E}(T \upharpoonright_{\mathcal{F}})$ . In particular,  $\mathcal{G} \subset \mathcal{F}$  implies that  $\mathcal{E}(T \upharpoonright_{\mathcal{G}}) \leq \mathcal{E}(T \upharpoonright_{\mathcal{F}})$ , so entropy is an invariant of weak-isomorphism.
- b:  $\mathcal{E}(T \upharpoonright_{\mathcal{G}_1 \vee \mathcal{G}_2 \vee \dots}) \leq \sum_j \mathcal{E}(T \upharpoonright_{\mathcal{G}_j})$ . And  $\mathcal{E}(T, Q_1 \vee Q_2 \vee \dots) \leq \sum_j \mathcal{E}(T, Q_j)$ .
- c: For mpts  $(S_j : Y_j, \nu_j)$ :  $\mathcal{E}(S_1 \times S_2 \times \dots) = \sum_j \mathcal{E}(S_j)$ .
- d:  $\mathcal{E}(T^{-1}) = \mathcal{E}(T)$ . More generally,  $\mathcal{E}(T^n) = |n| \cdot \mathcal{E}(T)$ . ♦

**E.g: Meshalkin's map.** In the wake of Kolmogorov's 1958 entropy paper, for two Bernoulli-shifts to be isomorphic one now knew that they had to have equal entropies. Meshalkin provided the first non-trivial example [44], in 1959.

Let  $S:Y\supseteq$  be the Bernoulli-shift over the “letter” alphabet  $\{E, D, P, N\}$ , with probability distribution  $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ . The letters E, D, P, N stand for *Even*, *oDd*, *Positive*, *Negative*, and will be used to describe the code (isomorphism) between the processes.

Use  $T:X\supset$  for the Bernoulli-shift over “digit” alphabet  $\{0,+1,-1,+2,-2\}$ , with probability distribution  $(\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8})$ . Both distributions,  $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$  and  $(\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8})$ , have dis-tropy  $\log(4)$ .

After deleting invariant nullsets from  $X$  and  $Y$ , we will construct a measure-preserving isomorphism  $\psi: X \rightarrow Y$  so that  $T \circ \psi = \psi \circ S$ .

*The Code.* In  $X$ , consider this point  $x$ :

$$\dots, 0, 0, 0, -1, 0, 0, +1, +2, -1, +1, 0, \dots$$

Regard each **0** as a left-parenthesis, and each non-zero as a right-parenthesis. Link them according to the legal way of matching parentheses, as shown in the top row, below:

|          |          |          |    |          |          |    |    |    |    |          |
|----------|----------|----------|----|----------|----------|----|----|----|----|----------|
| <b>0</b> | <b>0</b> | <b>0</b> | -1 | <b>0</b> | <b>0</b> | +1 | +2 | -1 | +1 | <b>0</b> |
| P        | N        | N        | D  | P        | P        | D  | E  | D  | D  | ?        |

The leftmost  $0$  is linked to the rightmost  $+1$ , as indicated by the longest-overbar. The left/right-parentheses form a  $(\frac{1}{2}, \frac{1}{2})$ -random-walk. Since this random walk is recurrent, we know that every position in  $x$  will be linked (except for a nullset of points  $x$ ).

Below each **0**, write “P” or “N” as the **0** is linked to a *positive* or *negative* digit. And below the other digits, write “E” or “D” as the digit is *even* or *odd*. So the upper name in  $X$  is mapped to the lower name, a point  $y \in Y$ .

This map  $\psi: X \rightarrow Y$  carries the upstairs  $(\frac{1}{2}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8})$  distribution to  $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ , downstairs. It takes some arguing to show that independence is preserved.

The inverse map,  $\psi^{-1}$ , views D and E as right-parentheses, and P and N as left. Above D, write the odd digit **+1** or **-1**, as this D is linked to Positive or Negative.  $\square$

**E.g: Markov Shifts.** A Bernoulli process  $T, \mathbb{P}$  has independence,  $\mathbb{P}_{(-\infty..0]} \perp \mathbb{P}_1$ , whereas a *Markov process* is a bit less aloof:

*The infinite Past  $\mathbb{P}_{(-\infty..0]}$  doesn't provide any more information about Tomorrow than Today did.*

That is, the conditional distribution  $\mathbb{P}_1 | \mathbb{P}_{(-\infty..0]}$  equals  $\mathbb{P}_1 | \mathbb{P}_0$ . Equivalently,

$$25: \quad \mathcal{H}(\mathbb{P}_1 | \mathbb{P}_0) = \mathcal{H}(\mathbb{P}_1 | \mathbb{P}_{(-\infty..0)}) \stackrel{\text{note}}{=} \mathcal{E}(T, \mathbb{P}).$$

The simplest non-trivial Markov process  $(T, \mathbb{P} : X, \mu)$  is over a two-letter alphabet  $\{a, b\}$ , and has transition graph (26), for some choice of transition probabilities  $s$  and  $c$ . The

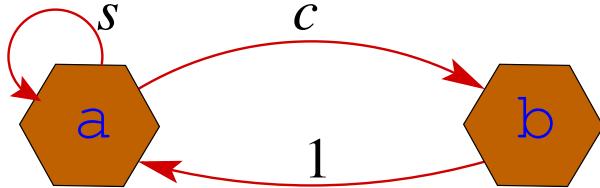


FIG. 26: Call the transition probabilities  $s := \text{Prob}(a \rightarrow a)$  for stay, and  $c := \text{Prob}(a \rightarrow b)$  for change. These are non-negative reals, and  $s+c = 1$ .

graph's Markov matrix is

$$M = [m_{i,j}]_{i,j} = \begin{bmatrix} s & c \\ 1 & 0 \end{bmatrix}, \quad \text{where } c = 1 - s, \text{ and } m_{i,j} \text{ denotes the probability of going from state } i \text{ to state } j.$$

If Today's distribution on the two states is the probability-vector  $\vec{v} := [p_a \ p_b]$ , then Tomorrow's is the product  $\vec{v} \cdot M$ . So a *stationary* process needs  $\vec{v} \cdot M = \vec{v}$ . This equation has the unique solution  $p_a = \frac{1}{1+c}$  and  $p_b = \frac{c}{1+c}$ . An example of computing the probability of a word (or cylinder set; see [Petersen, 5.1]) in the process, is

$$\mu_s(\text{baaaba}) = p_b \cdot m_{ba} \cdot m_{aa} \cdot m_{aa} \cdot m_{ab} \cdot m_{ba} = \frac{c}{1+c} \cdot 1 \cdot s \cdot s \cdot c \cdot 1.$$

The subscript on  $\mu_s$  indicates the dependence on the transition probabilities; let's also mark the mpt and call it  $T_s$ . Using (25), the entropy of our Markov map is

$$27: \quad \mathcal{E}(T_s) = p_a \cdot \mathcal{H}(s, c) + p_b \cdot \mathcal{H}(1, 0)^0 = \frac{1}{1+c} \cdot [s \log(s) + c \log(c)].$$

$\square$

## Determinism and Zero-entropy

Irrational rotations have zero-entropy; let's reveal this in two different ways.

Equip  $X := [0, 1)$  with “length” (Lebesgue) measure and wrap it into a circle. With “ $\oplus$ ” denoting addition mod-1, have  $T:X\mathcal{O}$  be the rotation  $T(x) := x \oplus \alpha$ , where the rotation number  $\alpha$  is irrational. Pick distinct points  $y_0, z_0 \in X$ , and let  $\mathbf{P}$  be the partition whose two atoms are the intervals  $[y_0, z_0)$  and  $[z_0, y_0)$ , wrapping around the circle.

The  $T$ -orbit of each point  $x$  is dense<sup>14</sup> in  $X$ . In particular,  $y_0$  has dense orbit, so  $\mathbf{P}$  separates points –hence generates– under  $T$ . Our goal, thus, is  $\mathcal{E}(T, \mathbf{P}) = 0$ .

**E.g: Rotations are deterministic.** The forward  $T$ -orbit of each point is dense. This is true for  $y_0$ , and so the *backward*  $T, \mathbf{P}$ -name of each  $x$  actually tells us which point  $x$  is. I.e,  $\mathbf{P} \subset \bigvee_{n=0}^{\infty} T^n \mathbf{P}$ , which is our definition of “process  $T, \mathbf{P}$  is **deterministic**”. Our  $\mathbf{P}$  being finite, this determinism implies that  $\mathcal{E}(T, \mathbf{P})$  is zero, by (19).

**Counting names in a rotation.** The  $\mathbf{P}_0 \vee \dots \vee \mathbf{P}_{n-1}$  partition places  $n$  translates of points  $y_0$  and of  $z_0$ , cutting the circle into at most  $2n$  intervals. Thus  $\mathcal{H}(\mathbf{P}_0 \vee \dots \vee \mathbf{P}_{n-1}) \leq \log(2n)$ . And  $\frac{1}{n} \log(2n) \rightarrow 0$ .

Alternatively, the below SMB-theorem implies, for an ergodic process  $T, \mathbf{P}$ , that the number of length- $n$  names is approximately  $2^{\mathcal{E}(T, \mathbf{P})n}$ ; this, after discarding small mass from the space. But the growth of  $n \mapsto 2n$  is sub-exponential and so, for our rotation,  $\mathcal{E}(T, \mathbf{P})$  must be zero.  $\square$

**28: Shannon-McMillan-Breiman<sup>15</sup> Theorem (SMB-Thm).** Set  $\mathbf{E} := \mathcal{E}(T, \mathbf{P})$ , where tuple  $(T, \mathbf{P} : X, \mu)$  is an ergodic process. Then the average information function

$$28a: \quad \frac{1}{n} \cdot \mathcal{I}_{\mathbf{P}_{[0..n]}}(x) \xrightarrow{n \rightarrow \infty} \mathbf{E}, \quad \text{for a.e } x \in X.$$

The functions  $f_n := \mathcal{I}_{\mathbf{P}_{[0..n]}}$  converge to the constant function  $\mathbf{E}$  both in the  $\mathbb{L}^1$ -norm and in probability.  $\diamond$

**Consequences.** Recall that  $\mathbf{P}_{[0..n]}$  means  $\mathbf{P}_0 \vee \mathbf{P}_1 \vee \dots \vee \mathbf{P}_{n-1}$ , where  $\mathbf{P}_j := T^j \mathbf{P}$ . As usual,  $\mathbf{P}_{[0..n]}\langle x \rangle$  denotes the  $\mathbf{P}_{[0..n]}$ -atom owning  $x$ .

Having deleted a nullset, we can restate (28a) to now say that  $\forall \varepsilon, \forall x, \forall_{\text{large } n}$ :

$$28b: \quad 1/2^{[\mathbf{E}+\varepsilon]n} \leq \mu(\mathbf{P}_{[0..n]}\langle x \rangle) \leq 1/2^{[\mathbf{E}-\varepsilon]n}.$$

This has the following consequence. Fixing a number  $\delta > 0$ , we consider any set with  $\mu(B) > \delta$  and count the number of  $n$ -names of points in  $B$ . The SMB-Thm implies

$$28c: \quad \forall \varepsilon, \forall_{\text{large } n}, \forall B \stackrel{\mu}{\geq} \delta : \quad |\{n\text{-names in } B\}| \geq 2^{[\mathbf{E}-\varepsilon]n}.$$

<sup>14</sup>Fix an  $\varepsilon > 0$  and an  $N > 1/\varepsilon$ . Points  $x, T(x), \dots, T^N(x)$  have some two at distance less than  $\frac{1}{N}$ ; say,  $\text{Dist}(T^i(x), T^j(x)) < \varepsilon$ , for some  $0 \leq i < j \leq N$ . Since  $T$  is an isometry,  $\varepsilon > \text{Dist}(x, T^k(x)) > 0$ , where  $k := j - i$ . So the  $T^k$ -orbit of  $x$  is  $\varepsilon$ -dense.

<sup>15</sup>In engineering circles, this is called the Almost-everywhere equi-partition theorem.

**E.g: Rank-1 has zero-entropy.** There are several equivalent definitions for “rank-1 transformation”, several of which are discussed in the introduction of [28]. (See [13, Chap. 6] and [47] and [27] for examples of stacking constructions.)

A **rank-1 transformation** ( $T : X, \mu$ ) admits a generating partition  $P$  and a sequence of Rokhlin stacks  $S_n \subset X$ , with heights going to  $\infty$ , and with  $\mu(S_n) \rightarrow 1$ . Moreover, each of these Rokhlin stacks is  $P$ -monochromatic, that is, each level of the stack lies entirely in some atom of  $P$ .

Taking a stack of some height  $2n$ , let  $B=B_n$  be the union of the bottom  $n$  levels of the stack. There are at most  $n$  many length- $n$  names starting in  $B_n$ , by monochromaticity. Finally,  $\mu(B_n)$  is almost  $\frac{1}{2}$ , so is certainly larger than  $\delta := \frac{1}{3}$ . Thus (28c) shows that our rank-1  $T$  has zero entropy.  $\square$

**Cautions on determinism’s relation to zero-entropy.** A finite-valued process  $T, P$  has zero-entropy iff  $P \subset \bigvee_{-\infty}^{-1} P_j$ . Iterating gives

$$\bigvee_0^{\infty} P_j \subset \bigvee_{-\infty}^{-1} P_j, \quad \text{i.e, the future is measurable with respect to the past.}$$

This was the case with the rotation, where a point’s past uniquely identified the point, thus telling us its future.

While determinism and zero-entropy mean the same thing for finite-valued processes, this fails catastrophically for real-valued (i.e, continuum-valued) processes, as shown by an example of the author’s. A stationary real-valued process  $\mathbf{V} = \dots V_{-1} V_0 V_1 V_2 \dots$  is constructed in [39] which is simultaneously

**strongly deterministic** : The two values  $V_0, V_1$  determine all of  $\mathbf{V}$ , future and past.

and **non-consecutively independent**. This latter means that for each bi-infinite increasing integer sequence  $\{n_j\}_{j=-\infty}^{\infty}$  with no consecutive pair (always  $1 + n_j < n_{j+1}$ ), then the list of random variables  $\dots V_{n_{-1}} V_{n_0} V_{n_1} V_{n_2} \dots$  is an independent process.

Restricting the random variables to be *countably*-valued, how much of the example survives? Joint work with Kalikow, [40], produced a countably-valued stationary  $\mathbf{V}$  which is non-consecutively independent as well as deterministic. (Strong determinism is ruled out, due to cardinality considerations.) A side-effect of the construction is that  $\mathbf{V}$ ’s time-reversal  $n \mapsto V_{-n}$  is not deterministic.

**Pinsker Field.** Define a collection of sets (the script Z is for “zero”)

$$29: \quad \mathcal{Z} = \mathcal{Z}_T = \mathcal{Z}(T) := \{D \in \mathcal{X} \mid \mathcal{E}(T, (D, D^c)) = 0\}.$$

Courtesy (24b),  $\mathcal{Z}$  is a  $T$ -invariant field, and

$$29': \quad \forall Q \subset \mathcal{Z} : \quad \mathcal{E}(T, Q) = 0.$$

The **Pinsker field** of  $T^{\heartsuit 16}$  is this  $\mathcal{Z}$ . It is maximal with respect to (29'). Unsurprisingly, the **Pinsker factor**  $T \upharpoonright_{\mathcal{Z}}$  has zero entropy, that is,  $\mathcal{E}(T \upharpoonright_{\mathcal{Z}}) = 0$ .

The asymptotic past of the  $T, \mathbf{P}$  process is called its **tail field**, where

$$\text{Tail}(T, \mathbf{P}) := \bigcap_{L=1}^{\infty} \bigvee_{j=-\infty}^{-L} \mathbf{P}_j.$$

**30: Theorem (Pinsker).** Suppose  $\mathbf{P}$  is a generating partition for an ergodic  $T$ . Then  $\text{Tail}(T, \mathbf{P})$  equals  $\mathcal{Z}_T$ . In particular, all generating partitions for  $T$  have the same tail field. And the future field of  $T, \mathbf{P}$ , which is  $\mathcal{Z}(T^{-1}) \stackrel{\text{note}}{=} \mathcal{Z}(T)$ , equals its tail field.  $\diamond$

### Ornstein theory

In 1970, Don Ornstein solved the long-standing problem of showing that entropy was a complete isomorphism-invariant of Bernoulli transformations; that is, that two independent processes with same entropy necessarily have the same underlying transformation. (Earlier, Sinai had shown that two such Bernoulli maps were *weakly isomorphic*, that is, each isomorphic to a factor of the other.)

Ornstein introduced the notion of a process being *finitely determined*, see [46] for a definition, proved that a transformation  $T$  was Bernoulli IFF it had a finitely-determined generator IFF every partition was finitely-determined with respect to  $T$ , and showed that entropy completely classified the finitely-determined processes upto isomorphism.

### The Pinsker-Field and K-automorphisms

Said differently, the zero-entropy transpositions are those whose Pinsker-field is everything. **TBW** •••

---

<sup>16</sup>Traditionally, this called the *Pinsker algebra* where, in this context, “algebra” is understood to mean “ $\sigma$ -algebra”.

## Topological Entropy

Adler, Konheim and McAndrew, in 1965, published the first definition of *topological entropy* in the eponymous article [32]. Here,  $T:X\supset$  is a continuous self-map of a compact topological space. The role of atoms is played by open sets. Instead of a finite partition, one uses a finite<sup>17</sup> **open-cover**  $\mathcal{V} = \{U_j\}_{j=1}^L$ , i.e each **patch**  $U_j$  is open, and their union  $\bigcup(\mathcal{V}) = X$ . (Henceforth, ‘cover’ means “open cover”.)

Let  $\text{Card}(\mathcal{V})$  be the minimum cardinality over all subcovers.

$$\begin{aligned}\text{Card}(\mathcal{V}) &:= \text{Min} \{ \# \mathcal{V}' \mid \mathcal{V}' \subset \mathcal{V} \text{ and } \bigcup(\mathcal{V}') = X \}, \text{ and let} \\ \mathcal{H}(\mathcal{V}) &= \mathcal{H}_{\text{top}}(\mathcal{V}) := \log(\text{Card}(\mathcal{V})).\end{aligned}$$

Analogous to the definitions for partitions, we prescribe

$$\begin{aligned}\mathcal{V} \vee \mathcal{W} &:= \{V \cap W \mid V \in \mathcal{V} \text{ and } W \in \mathcal{W}\}; \\ T\mathcal{V} &:= \{T^{-1}(U) \mid U \in \mathcal{V}\} \quad \text{and} \quad \mathcal{V}_{[0..n]} := \mathcal{V}_0 \vee \mathcal{V}_1 \vee \dots \vee \mathcal{V}_{n-1}; \\ \mathcal{W} &\geq \mathcal{V}, \text{ if each } \mathcal{W}\text{-patch is a subset of some } \mathcal{V}\text{-patch.}\end{aligned}$$

The  $T,\mathcal{V}$ -**entropy** is

$$31: \quad \mathcal{E}^T(\mathcal{V}) = \mathcal{E}(T, \mathcal{V}) = \mathcal{E}_{\text{top}}(T, \mathcal{V}) := \limsup_{n \rightarrow \infty} \frac{1}{n} \cdot \mathcal{H}_{\text{top}}(\mathcal{V}_{[0..n]}).$$

And the **topological entropy** of  $T$  is

$$32: \quad \mathcal{E}_{\text{top}}(T) := \sup_{\mathcal{V}} \mathcal{E}_{\text{top}}(T, \mathcal{V}), \quad \text{taken over all open covers } \mathcal{V}.$$

Thus  $\mathcal{E}_{\text{top}}$  counts, in some sense, the growth rate in the number of  $T$ -orbits of length  $n$ .

Evidently, topological entropy is an isomorphism invariant. Two continuous maps  $T:X\rightarrow X$  and  $S:Y\rightarrow Y$  are **topologically conjugate** (as *isomorphism* is called in this category) if there exists a homeomorphism  $\psi:X\rightarrow Y$  with  $\psi T = S\psi$ .

33: **Subadditive Lemma.** Consider a sequence  $\mathbf{s} = (s_i)_{i=1}^{\infty} \subset [-\infty, \infty]$  satisfying  $s_{k+\ell} \leq s_k + s_{\ell}$ , for all  $k, \ell \in \mathbb{Z}$ . Then the following limit exists in  $[-\infty, \infty]$ , and  $\lim_{n \rightarrow \infty} \frac{s_n}{n} = \inf_n \frac{s_n}{n}$ .  $\diamond$

Topological entropy, or “top-ent” for short, satisfies many of the relations of measure-entropy.

34: **Lemma.**

- a:  $\mathcal{V} \leq \mathcal{W}$  implies  $\mathcal{H}(\mathcal{V}) \leq \mathcal{H}(\mathcal{W})$  and  $\mathcal{E}(T, \mathcal{V}) \leq \mathcal{E}(T, \mathcal{W})$ .
- b:  $\mathcal{H}(\mathcal{V} \vee \mathcal{W}) \leq \mathcal{H}(\mathcal{V}) + \mathcal{H}(\mathcal{W})$ .
- c:  $\mathcal{H}(T(\mathcal{V})) \leq \mathcal{H}(\mathcal{V})$ , with equality if  $T$  is surjective. Also,  $\mathcal{E}(T, \mathcal{V}) \leq \mathcal{H}(\mathcal{V})$ ,

<sup>17</sup>Because we only work on a compact space, we can omit “finite”. Some generalizations of topological entropy to non-compact spaces require that only *finite* open-covers be used; see [37].

d: In (31), the  $\lim_{n \rightarrow \infty} \frac{1}{n} \cdot \mathcal{H}(\mathcal{V}_{[0..n]})$  exists.

e: Suppose  $T$  is a homeomorphism. Then  $\mathcal{E}(T^{-1}, \mathcal{V}) = \mathcal{E}(T, \mathcal{V})$ , for each cover  $\mathcal{V}$ . Consequently,  $\mathcal{E}_{\text{top}}(T^{-1}) = \mathcal{E}_{\text{top}}(T)$ .

f: Suppose  $\mathfrak{C}$  is a collection of covers such that: For each cover  $\mathcal{W}$ , there exists a  $\mathcal{V} \in \mathfrak{C}$  with  $\mathcal{V} \geq \mathcal{W}$ . Then  $\mathcal{E}_{\text{top}}(T)$  equals the supremum of  $\mathcal{E}_{\text{top}}(T, \mathcal{V})$ , just taken over those  $\mathcal{V} \in \mathfrak{C}$ .

g: For all  $\ell \in \mathbb{N}$ :  $\mathcal{E}_{\text{top}}(T^\ell) = \ell \cdot \mathcal{E}_{\text{top}}(T)$ . ♦

**Proof of (c).** Let  $\mathcal{C} \leq \mathcal{V}$  be a min-cardinality subcover. Then  $T\mathcal{C}$  is a subcover of  $T\mathcal{V}$ . So  $\text{Card}(T\mathcal{V}) \leq |\mathcal{C}| = |\mathcal{C}|$ .

As for entropy, inequality (b) and the foregoing give  $\mathcal{H}(\mathcal{V}_{[0..n]}) \leq \mathcal{H}(\mathcal{V}) \cdot n$ . ♦

**Proof of (d).** Set  $s_n := \mathcal{H}(\mathcal{V}_{[0..n]})$ . Then  $s_{k+\ell} \leq s_k + \mathcal{H}(T^k(\mathcal{V}_{[0..n]})) \leq s_k + s_\ell$ , by (b) and (c), and so the Subadditive Lemma (33), applies. ♦

**Proof of (g).** WLOG,  $\ell = 3$ . Given  $\mathcal{V}$  a cover, triple it to  $\widehat{\mathcal{V}} := \mathcal{V} \cap T\mathcal{V} \cap T^2\mathcal{V}$ ; so  $\bigvee_{j \in [0..N]} [T^3]^j(\widehat{\mathcal{V}}) = \bigvee_{i \in [0..3N]} T^i(\mathcal{V})$ . Thus  $\mathcal{H}(T^3, \widehat{\mathcal{V}}, N) = \mathcal{H}(T, \mathcal{V}, 3N)$ , extending notation. Part (d) and sending  $N \rightarrow \infty$ , gives  $\mathcal{E}(T^3, \widehat{\mathcal{V}}) = 3 \cdot \mathcal{H}(T, \mathcal{V})$ .

Lastly, take covers such that  $\mathcal{E}(T^3, \mathcal{C}^{(k)}) \rightarrow \mathcal{E}_{\text{top}}(T^3)$  and  $\mathcal{E}(T, \mathcal{D}^{(k)}) \rightarrow \mathcal{E}_{\text{top}}(T)$ , as  $k \rightarrow \infty$ . Define  $\mathcal{V}^{(k)} := \mathcal{C}^{(k)} \vee \mathcal{D}^{(k)}$ . Apply the above to  $\mathcal{V}^{(k)}$ , then send  $k \rightarrow \infty$ . ♦

## Using a metric

From now on, *our space is a compact metric space*  $(X, d)$ . Dinaburg [33], and Bowen [34],[35], gave alternative, equivalent, definitions of top-ent, in the compact metric-space case, that are often easier to work with than covers. Bowen gave a definition also when  $X$  is not compact, <sup>18</sup> see [35] and [22, chap. 7].

**Metric preliminaries.** An  **$\varepsilon$ -ball-cover** comprises finitely many balls, all of radius  $\varepsilon$ . Since our space is compact, every cover  $\mathcal{V}$  has a **Lebesgue number**  $\varepsilon > 0$ . I.e, for each  $z \in X$ , the  $\text{Bal}(z, \varepsilon)$  lies entirely inside at least one  $\mathcal{V}$ -patch. (In particular, there is an  $\varepsilon$ -ball-cover which refines  $\mathcal{V}$ .) Let  $\text{LEB}(\mathcal{V})$  be the supremum of the Lebesgue numbers. Courtesy (34f) we can

35: Fix a “universal” list  $\mathcal{V}^{(1)} \leq \mathcal{V}^{(2)} \leq \dots$ , with  $\mathcal{V}^{(k)}$  a  $\frac{1}{k}$ -ball-cover. For every  $T: X \rightarrow X$ , then, the  $\lim_k \mathcal{E}(T, \mathcal{V}^{(k)})$  computes  $\mathcal{E}_{\text{top}}(T)$ .

<sup>18</sup>When  $X$  is not compact, the definitions need not coincide; e.g [37]. And topologically-equivalent metrics, but which are not uniformly equivalent, may give the same  $T$  different entropies, [22, P. 171].

**An  $\varepsilon$ -microscope.** Three notions are useful in examining a metric space  $(X, m)$  at scale  $\varepsilon$ . Subset  $A \subset X$  is an  **$\varepsilon$ -separated-set**, if  $m(z, z') \geq \varepsilon$  for all distinct  $z, z' \in A$ . Subset  $F \subset X$  is  **$\varepsilon$ -spanning** if  $\forall x \in X, \exists z \in F$  with  $m(x, z) < \varepsilon$ .

Lastly, a cover  $\mathcal{V}$  is  **$\varepsilon$ -small** if  $\text{Diam}(U) < \varepsilon$ , for each  $U \in \mathcal{V}$ .

**You take the High Road and I'll take the Low Road.** There are several routes to computing  $\text{top-ent}$ , some via maximization, others, minimization. Our foregoing discussion computed  $\mathcal{E}_{\text{top}}(T)$  by a family of **sizes**  $f_k(n) = f_k^T(n)$ , depending on a parameter  $k$  which specifies the fineness of scale. (In (35), this  $k$  is an integer; in the original definition, an open cover.) Define two numbers:

$$36: \quad \widehat{L}^f(k) := \limsup_{n \rightarrow \infty} \quad \text{and} \quad \underline{L}^f(k) := \liminf_{n \rightarrow \infty} \quad \text{of} \quad \frac{1}{n} \log(f_k(n)).$$

Finally, let  $\mathcal{E}^f(T) := \sup_k \widehat{L}^f(k)$ . If the limit exists in (36) then we write  $L^f(k)$  for the common value.

The A-K-M definition used the size  $f_{\mathcal{V}}(n) := \text{Card}(\mathcal{V}_{[0..n]})$ , where

$$\text{Card}(\mathcal{W}) := \text{Minimum cardinality of a subcover from } \mathcal{W}.$$

Here are three metric-space sizes  $f_{\varepsilon}(n)$ :

$$\text{Sep}(n, \varepsilon) := \text{Maximum cardinality of a } d_n\text{-}\varepsilon\text{-separated set}.$$

$$\text{Spn}(n, \varepsilon) := \text{Minimum cardinality of a } d_n\text{-}\varepsilon\text{-spanning set}.$$

$$\text{Cov}(n, \varepsilon) := \text{Minimum cardinality of a } d_n\text{-}\varepsilon\text{-small cover}.$$

These use a list  $(d_n)_{n=1}^{\infty}$  of progressively finer metrics on  $X$ , where

$$d_N(x, y) := \max_{j \in [0..N]} d(T^j(x), T^j(y)).$$

**37: All-Roads-lead-to-Rome Theorem.** Fix  $\varepsilon$  and let  $\mathcal{W}$  be any  $d$ - $\varepsilon$ -small cover. Then

$$i: \forall n: \text{Cov}(n, 2\varepsilon) \leq \text{Spn}(n, \varepsilon) \leq \text{Sep}(n, \varepsilon) \leq \text{Card}(\mathcal{W}_{[0..n]}).$$

$$ii: \text{Take a cover } \mathcal{V} \text{ and a } \delta < \text{LEB}(\mathcal{V}). \text{ Then } \forall n: \text{Card}(\mathcal{V}_{[0..n]}) \leq \text{Cov}(n, \delta).$$

$$iii: \text{The limit } L^{\text{Cov}}(\varepsilon) = \lim_n \frac{1}{n} \log(\text{Cov}(n, \varepsilon)) \text{ exists in } [0, \infty).$$

$$iv: \mathcal{E}^{\text{Sep}}(T) = \mathcal{E}^{\text{Spn}}(T) = \mathcal{E}^{\text{Cov}}(T) = \mathcal{E}^{\text{Card}}(T) \stackrel{\text{by defn}}{=} \mathcal{E}_{\text{top}}(T). \quad \diamond$$

**Pf of (i).** Take  $F \subset X$ , a min-cardinality  $d_n$ - $\varepsilon$ -spanning set. So  $\bigcup_{z \in F} D_z = X$ , where

$$D_z := d_n\text{-Bal}(z, \varepsilon) \stackrel{\text{note}}{=} \bigcap_{j=0}^{n-1} T^{-j}(\text{Bal}(T^j z, \varepsilon)).$$

This  $\mathcal{D} := \{D_z\}_z$  is a cover, and it is  $\mathbf{d}_n$ - $2\epsilon$ -small. Thus  $\text{Cov}(n, 2\epsilon) \leq |\mathcal{D}| = |F|$ .

For any metric, a *maximal*  $\epsilon$ -separated-set is automatically  $\epsilon$ -spanning; adjoin a putative unspanned point to get a larger separated set.

Let  $A$  be a max-cardinality  $\mathbf{d}_n$ - $\epsilon$ -separated set. Take  $\mathcal{C}$ , a min-cardinality subcover of  $\mathcal{W}_{[0..n]}$ . For each  $z \in A$ , pick a  $\mathcal{C}$ -patch  $C_z \ni z$ . Could some pair  $x, y \in A$  pick the same  $C$ ? Well, write  $C = \bigcap_{j=0}^{n-1} T^{-j}(W_j)$ , with each  $W_j \in \mathcal{W}$ . For every  $j \in [0..n)$ , then,  $\mathbf{d}(T^j(x), T^j(y)) \leq \text{Diam}(W_j) < \epsilon$ . Hence  $\mathbf{d}_n(x, y) < \epsilon$ ; so  $x = y$ . Accordingly, the  $z \mapsto C_z$  map is injective, whence  $|A| \leq |\mathcal{C}|$ .  $\diamond$

**Pf of (ii).** Choose a min-cardinality  $\mathbf{d}_n$ - $\delta$ -small cover  $\mathcal{C}$ . For each  $C \in \mathcal{C}$  and  $j \in [0..n)$ , the  $\mathbf{d}$ -Diam( $T^j(C)$ )  $< \delta$ . So there is a  $\mathcal{V}$ -patch  $V_{C,j} \supset T^j(C)$ . Hence

$$\mathcal{V}_{[0..n]} \stackrel{\text{note}}{\ni} \bigcap_{j=0}^{n-1} T^{-j}(V_{C,j}) \supset C.$$

Thus  $\mathcal{V}_{[0..n]} \leq \mathcal{C}$ . So  $\text{Card}(\mathcal{V}_{[0..n]}) \leq \text{Card}(\mathcal{C}) \leq |\mathcal{C}| = \text{Cov}(n, \delta)$ .  $\diamond$

**Pf of (iii).** To upper-bound  $\text{Cov}(k+\ell, \epsilon)$  let  $\mathcal{V}$  and  $\mathcal{W}$  be min-cardinality  $\epsilon$ -small covers, respectively, for metrics  $\mathbf{d}_k$  and  $\mathbf{d}_\ell$ . Then  $\mathcal{V} \cap T^\ell(\mathcal{W})$  is a  $\epsilon$ -small for  $\mathbf{d}_{k+\ell}$ . Consequently  $\text{Cov}(k+\ell, \epsilon) \leq \text{Cov}(k, \epsilon) \cdot \text{Cov}(\ell, \epsilon)$ . Thus  $n \mapsto \log(\text{Cov}(n, \epsilon))$  is subadditive.  $\diamond$

**Pf of (iv).** Pick a  $\mathcal{V}$  from the list in (35), choose some  $2\epsilon < \text{LEB}(\mathcal{V})$  followed by an  $\epsilon$ -small  $\mathcal{W}$  from (35). Pushing  $n \rightarrow \infty$  gives

$$38: \quad \mathbf{L}^{\text{Card}}(\mathcal{V}) \leq \mathbf{L}^{\text{Cov}}(2\epsilon) \leq \frac{\mathbf{L}^{\text{Sep}}(\epsilon) \leq \mathbf{L}^{\text{Sep}}(\epsilon)}{\mathbf{L}^{\text{Sep}}(\epsilon) \leq \mathbf{L}^{\text{Sep}}(\epsilon)} \leq \mathbf{L}^{\text{Card}}(\mathcal{W}).$$

Now send  $\mathcal{V}$  and  $\mathcal{W}$  along the (35) list.  $\diamond$

**Pretension.** Topological entropy takes its values in  $[0, \infty]$ . A useful corollary of (38) can be stated in terms of any Distance( $\cdot, \cdot$ ) which topologizes  $[0, \infty]$  as a compact interval.

For each continuous  $T: X \rightarrow X$  on a compact metric-space, the Distance( $\mathbf{L}^{\text{Sep}}(\epsilon)$ ,  $\mathbf{L}^{\text{Sep}}(\epsilon)$ ) goes to zero as  $\epsilon \searrow 0$ . Consequently, we can pretend that the

$$39: \quad \mathbf{L}^{\text{Sep}}(\epsilon) = \lim_{n \rightarrow \infty} \frac{1}{n} \log(\text{Sep}(n, \epsilon))$$

limit exists, in arguments that subsequently send  $\epsilon \searrow 0$ . Ditto for  $\mathbf{L}^{\text{Spn}}(\epsilon)$ .

We'll use this during the proof of the **Variational Principle**. But first, here are two entropy computations which illustrate the efficacy in having several characterizations of top-ent.

**E.g:  $\mathcal{E}_{\text{top}}(\text{Isometry}) = 0$ .** Suppose  $(T : X, d)$  is a distance-preserving map of a compact metric-space. Fixing  $\varepsilon$ , a set is  $d_n$ - $\varepsilon$ -separated IFF it is  $d$ - $\varepsilon$ -separated. Thus  $\text{Sep}(n, \varepsilon)$  does not grow with  $n$ . So each  $\widehat{L}^{\text{Sep}}(\varepsilon)$  is zero.  $\square$

**E.g: Topological Markov Shifts.** Imagine ourselves back in the days when computer data is stored on large reels of fast-moving magnetic tape. One strategy to maximize the density of binary data stored is to *not* put timing-marks (which take up space) on the tape. This has the defect that if we write, say, 577 consecutive 1-bits, the tape-reader may erroneously count 578 copies of 1. We sidestep this flaw by first encoding our data so as to avoid the 11 577 1 word, then writing to tape.

Generalize this to a finite alphabet  $Q$  and a finite list  $\mathcal{F}$  of disallowed  $Q$ -words. Extend each word to a common length  $K+1$ ; now  $\mathcal{F} \subset Q^{K+1}$ . The resulting “ $K$ -step TMS” (*topological Markov shift*) is the shift on the set of doubly- $\infty$   $Q$ -names having no substring in  $\mathcal{F}$ . In the above magnetic-tape example,  $K = 576$ . Making it more realistic, suppose some string of zeros, say 00 574 0, is also forbidden<sup>19</sup>. Extending to length 577, we get  $2^3 = 8$  new disallowed words of form 00 574 0 $b_1b_2b_3$ .

We *recode* to a 1-step TMS (just called a TMS or a *subshift of finite type*) over the alphabet  $P := Q^K$ . Each outlawed  $Q$ -word  $w_0w_1 \dots w_K$  engenders a length-2 forbidden  $P$ -word  $(w_0, \dots, w_{K-1})(w_1, \dots, w_K)$ . The resulting TMS is topologically conjugate to the original  $K$ -step. The *allowed* length-2 words can be viewed as the edges in a directed-graph and the set of points  $x \in X$  is the set of doubly- $\infty$  paths through the graph. Once trivialities removed, this  $X$  is a Cantor set and the shift  $T:X\curvearrowright$  is a homeomorphism.

**The Golden Shift.** As the simplest example, suppose our magnetic-tape is constrained by the Markov graph, FIG. 40, that we studied measure-theoretically in (26).

We want to store the text of *The Declaration of Independence* on our magnetic tape.<sup>20</sup> Imagining that English is a stationary process, we'd like to encode English into this Golden TMS as efficiently as possible. We seek a shift-invariant measure  $\mu$  on  $X_{\text{Gold}}$  of *maximum entropy*, should such exist.

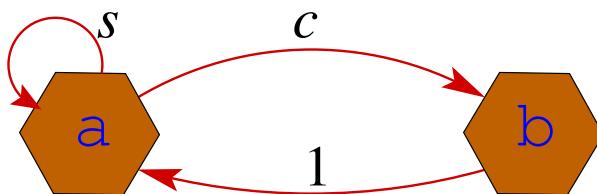


FIG. 40: Ignoring the labels on the edges, for the moment, the **Golden shift**,  $T$ , acts on the space of doubly-infinite paths through this graph. The space can be represented as a subset  $X_{\text{Gold}} \subset \{a, b\}^{\mathbb{Z}}$ , namely, the set of sequences with no two consecutive  $b$  letters.

View  $P = \{a, b\}$  as the time-zero partition on  $X_{\text{Gold}}$ ; that is, name  $x = \dots x_{-1}x_0x_1x_2 \dots$ , is in

<sup>19</sup>Perhaps the 0-bad-length, 574, is shorter than the 1-bad-length because, say, 0s take less tape-space than 1s and so –being written more densely– cause ambiguity sooner.

<sup>20</sup>... which, by Rights, *should* be stored as a Bernoulli process...

atom  $b$  IFF letter  $x_0$  is “ $b$ ”. Any measure  $\mu$  gives conditional probabilities

$$\begin{aligned}\mu(a | a) &=: s, & \mu(b | a) &=: c, \\ \mu(a | b) &\stackrel{\text{note}}{=} 1, & \mu(b | b) &\stackrel{\text{note}}{=} 0.\end{aligned}$$

But recall,  $\mathcal{E}(T) = \mathcal{H}(\mathbf{P}_1 | \mathbf{P}_{[-\infty..0]}) \leq \mathcal{H}(\mathbf{P}_1 | \mathbf{P}_0)$ . So among all measures that make the conditional distribution  $\mathbf{P}|a$  equal  $(s, c)$ , the *unique* one maximizing entropy is the  $(s, c)$ -Markov-process. Its entropy, derived in (27), is

$$41: \quad f(s) := \frac{1}{2-s} \cdot \mathcal{H}(s, 1-s) = \frac{-1}{2-s} \cdot [s \log(s) + [1-s] \log(1-s)].$$

Certainly  $f(0) = f(1) = 0$ , so  $f$ ’s maximum occurs at the (it turns out) *unique* point  $\widehat{s}$  where the derivative  $f'(\widehat{s})$  equals zero. This  $\widehat{s} = \frac{-1+\sqrt{5}}{2}$ . Plugging in, the maximum entropy supportable by the Golden Shift is

$$42: \quad \text{MaxEnt} = \frac{2}{5-\sqrt{5}} \cdot \left[ \frac{-1+\sqrt{5}}{2} \log\left(\frac{2}{-1+\sqrt{5}}\right) + \frac{3-\sqrt{5}}{2} \log\left(\frac{2}{3-\sqrt{5}}\right) \right].$$

Exponentiating, the number of  $\mu$ -typical  $n$ -names grows like  $G^n$ , where

$$42': \quad G = \left[ \frac{2}{-1+\sqrt{5}} \right]^{\frac{-1+\sqrt{5}}{5-\sqrt{5}}} \cdot \left[ \frac{2}{3-\sqrt{5}} \right]^{\frac{3-\sqrt{5}}{5-\sqrt{5}}}.$$

This expression<sup>21</sup> looks unpleasant to simplify –it isn’t even obviously an algebraic number– and yet topological entropy will reveal its familiar nature. This, because the **Variational Principle** (proved in the next section) says that the **top-ent** of a system is the supremum of measure-entropies supportable by the system.

**Top-ent of the Golden Shift.** For a moment, let’s work more generally on an arbitrary subshift (a closed, shift-invariant subset)  $X \subset \mathbf{Q}^{\mathbb{Z}}$ , where  $\mathbf{Q}$  is a finite alphabet. Here, the transformation is always the shift –but the *space* is varying– so agree to refer to the **top-ent** as  $\mathcal{E}_{\text{top}}(X)$ . Let  $\text{Names}_X(n)$  be the number of distinct words in the set  $\{x \upharpoonright_{[0..n]} \mid x \in X\}$ . Note that a metric inducing the product-topology on  $\mathbf{Q}^{\mathbb{Z}}$  is

$$43: \quad d(x, x') := \frac{1}{1+|m|}, \text{ for the smallest } |m| \text{ with } x_m \neq x'_m.$$

**44: Lemma.** Consider a subshift  $X$ . Then the  $\lim_{n \rightarrow \infty} \frac{1}{n} \log(\text{Names}_X(n))$  exists in  $[0, \infty]$ , and equals  $\mathcal{E}_{\text{top}}(X)$ . ◊

**Proof.** With  $\varepsilon \in (0, 1)$  fixed, two  $n$ -names are  $d_n$ - $\varepsilon$ -separated IFF they are not the same name. Hence  $\text{Sep}(n, \varepsilon) = \text{Names}_X(n)$ . ♦

---

<sup>21</sup>A popular computer-algebra-system was not, at least under my inexpert tutelage, able to simplify this. However, once top-ent gave the correct answer, it was able to detect the *equality*.

To compute  $\mathcal{E}_{\text{top}}(X_{\text{Gold}})$ , declare that a word is “golden” if it appears in some  $x \in X_{\text{Gold}}$ . Each  $[n+1]$ -golden word ending in **a** has form  $wa$ , where  $w$  is  $n$ -golden. An  $[n+1]$ -golden word ending in **b**, must end in **ab** and so has form  $wab$ , where  $w$  is  $[n-1]$ -golden. Summing up,

$$\text{Names}_{X_{\text{Gold}}}(n+1) = \text{Names}_{X_{\text{Gold}}}(n) + \text{Names}_{X_{\text{Gold}}}(n-1).$$

This is the Fibonacci recurrence, and indeed, these are the Fibonacci numbers, since  $\text{Names}_{X_{\text{Gold}}}(0) = 1$  and  $\text{Names}_{X_{\text{Gold}}}(1) = 2$ . Consequently, we have that

$$\text{Names}_{X_{\text{Gold}}}(n) \sim \text{Const} \cdot \lambda^n, \quad \text{where } \lambda = \frac{1+\sqrt{5}}{2} \text{ is the Golden Ratio.}$$

So the sesquipedalian number  $G$  from (42') is simply  $\lambda$ , and  $\mathcal{E}_{\text{top}}(X_{\text{Gold}}) = \log(\lambda)$ .

Since  $\log(\lambda) \approx 0.694$ , each thousand bits written on tape (subject to the “no bb substrings” constraint) can carry at most 694 bits of information.

**Top-ent of a general TMS.** A (finite) digraph  $G$  engenders a TMS  $T: X_G \rightarrow X_G$ , as well as a  $\{0, 1\}$ -valued adjacency matrix  $\mathbf{A} = \mathbf{A}_G$ , where  $a_{i,j}$  is the number of directed-edges from state  $i$  to  $j$ . (Here, each  $a_{i,j}$  is 0 or 1.) The  $(i, j)$ -entry in power  $\mathbf{A}^n$  is automatically the number of length- $n$  paths from  $i$  to  $j$ . Employing the matrix-norm  $\|\mathbf{M}\| := \sum_{i,j} |m_{i,j}|$ , then,

$$\|\mathbf{A}^n\| = \text{Names}_X(n).$$

Happily Gelfand's formula<sup>22</sup> applies: *For an arbitrary (square) complex matrix,*

$$45: \quad \lim_{n \rightarrow \infty} \|\mathbf{A}^n\|^{1/n} = \text{SpecRad}(\mathbf{A}).$$

This righthand side, the *spectral radius* of  $\mathbf{A}$ , means the maximum of the absolute values of  $\mathbf{A}$ 's eigenvalues. So the top-ent of a TMS is thus the

$$46: \quad \mathcal{E}_{\text{top}}(X_G) = \text{SpecRad}(\mathbf{A}_G) := \text{Max}\{|e| \mid e \text{ is an eigenvalue of } \mathbf{A}_G\}.$$

The  $(a, b)$ -adjacency matrix of Fig. 40 is  $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ , whose eigenvalues are  $\lambda$  and  $-1/\lambda$ .

**Labeling edges.** Interpret  $(s, c, 1)$  simply as edge-labels in (40). The set of doubly- $\infty$  paths can also be viewed as a subset  $Y_{\text{Gold}} \subset \{s, c, 1\}^{\mathbb{Z}}$ , and it too is a TMS. The shift on  $Y_{\text{Gold}}$  is conjugate (topologically isomorphic) to the shift on  $X_{\text{Gold}}$ , so they *a fortiori* have the same top-ent,  $\log(\lambda)$ . The  $(s, c, 1)$ -adjacency matrix is  $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ . Its  $|\cdot|$ -largest eigenvalue is still  $\lambda$ , as it must.

Now we make a new graph. We modify (40) by manufacturing a total of two  $s$ -edges, seven  $c$ -edges, and three edges  $1_1, 1_2, 1_3$ . Give these  $2+7+3$  edges twelve distinct labels. We *could* compute the resulting TMS-entropy from the corresponding  $12 \times 12$  adjacency matrix. Alternatively, look at the  $(a, b)$ -adjacency matrix  $\mathbf{A} := \begin{bmatrix} 2 & 7 \\ 3 & 0 \end{bmatrix}$ . The roots of its characteristic polynomial are  $1 \pm \sqrt{22}$ . Hence  $\mathcal{E}_{\text{top}}$  of this 12-symbol TMS is  $\log(1 + \sqrt{22})$ . □

<sup>22</sup>See [54, 10.13] or [53, Spectral\_radius].

## The variational principle

Let  $\mathfrak{M} := \mathfrak{M}(X, d)$  be the set of Borel probability measures, and  $\mathfrak{M}(T) := \mathfrak{M}(T : X, d)$  the set of  $T$ -invariant  $\mu \in \mathfrak{M}$ . Assign

$$\text{EntSup}(T) := \sup \{\mathcal{E}_\mu(T) \mid \mu \in \mathfrak{M}(T)\}.$$

47: **Variational Principle (Goodson).**  $\text{EntSup}(T) = \mathcal{E}_{\text{top}}(T)$ . ◊

This says that  $\text{top-ent}$  is the top entropy —*if* there is a measure  $\mu$  which realizes the supremum. There doesn't have to be. Choose a sequence of metric-systems  $(S_k : Y_k, m_k)$  whose entropies *strictly* increase  $\mathcal{E}_{\text{top}}(S_k) \nearrow L$  to some limit in  $(0, \infty]$ . Let  $(S_\infty : Y_\infty, m_\infty)$  be the identity-map on a 1-point space. Define a new system  $(T : X, d)$ , where  $X := \bigsqcup_{k \in [1.. \infty]} Y_k$ . Have  $T(x) := S_k(x)$ , for the unique  $k$  with  $Y_k \ni x$ . As for the metric, on  $Y_k$  let  $d$  be a scaled version of  $m_k$ , so that the  $d$ -Diam( $Y_k$ ) is less than  $1/2^k$ . Finally, for points in *distinct* components,  $x \in Y_k$  and  $z \in Y_\ell$ , decree that  $d(x, z) := |2^{-k} - 2^{-\ell}|$ . Our  $T$  is continuous, and is a homeomorphism if each of the  $S_k$  is. Certainly  $\mathcal{E}_{\text{top}}(T) = L > \mathcal{E}_{\text{top}}(S_k)$ , for every  $k \in [1.. \infty]$ .

If  $L$  is *finite* then there is *no* measure  $\mu$  of maximal entropy; for  $\mu$  must give mass to some  $Y_k$ ; this pulls the entropy below  $L$ , since there are no compensatory components with entropy exceeding  $L$ .

In contrast, when  $L = \infty$  then there *is* a maximal-entropy measure (put mass  $1/2^j$  on some component  $Y_{k_j}$ , where  $k_j \nearrow \infty$  swiftly); indeed, there are continuum-many maximal-entropy measures. But there is no<sup>23</sup> *ergodic* measure of maximal entropy.

For a concrete  $L = \infty$  example, let  $S_k$  be the shift on  $[1..k]^\mathbb{Z}$ .

**Topology on  $\mathfrak{M}$ .** Let's arrange our tools for establishing the **Variational Principle**. I follow Misiurewicz's proof, adapted from the presentations in [22] and [11].

Equip  $\mathfrak{M}$  with the *weak-\** topology.<sup>24</sup> An  $A \subset X$  is  $\mu$ -*nice* if its topological boundary  $\partial(A)$  is  $\mu$ -null. And a *partition* is  $\mu$ -*nice* if each atom is.

48: **Prop'n.** *If  $\alpha_L \rightarrow \mu$  and  $A \subset X$  is  $\mu$ -nice, then  $\alpha_L(A) \rightarrow \mu(A)$ .* ◊

**Proof.** Define operator  $\mathcal{U}(D) := \limsup_L \alpha_L(D)$ . It suffices to show that  $\mathcal{U}(A) \leq \mu(A)$ . For since  $A^c$  is  $\mu$ -nice too, then  $\mathcal{U}(A^c) \leq \mu(A^c)$ . Thus  $\lim_L \alpha_L(A)$  exists, and equals  $\mu(A)$ .

Because  $C := \overline{A}$  is closed, the continuous functions  $f_N \searrow \mathbf{1}_C$  pointwise, where

$$f_N(x) := 1 - \text{Min}(N \cdot d(x, C), 1).$$

<sup>23</sup>The ergodic measures are the extreme points of  $\mathfrak{M}(T)$ ; call them  $\mathfrak{M}_{\text{Erg}}(T)$ . This  $\mathfrak{M}(T)$  is the set of barycenters obtained from Borel probability measures on  $\mathfrak{M}_{\text{Erg}}(T)$ ; see [53, Krein-Milman theorem, Choquet theory]. In this instance, what explains the failure to have an *ergodic* maximal-entropy measure? Let  $\mu_k$  be an invariant ergodic measure on  $Y_k$ . These measures *do* converge to the one-point (ergodic) probability measure,  $\mu_\infty$ , on  $Y_\infty$ . But the map  $\mu \mapsto \mathcal{E}_\mu(T)$  is not continuous at  $\mu_\infty$ .

<sup>24</sup>Measures  $\alpha_L \rightarrow \mu$  IFF  $\int f \, d\alpha_L \rightarrow \int f \, d\mu$ , for each continuous  $f : X \rightarrow \mathbb{R}$ . This metrizable topology makes  $\mathfrak{M}$  compact. Always,  $\mathfrak{M}(T)$  is a non-void compact subset; see [Petersen, §6].

By the Monotone Convergence theorem, then,  $\int f_N d\mu \xrightarrow{N} \mu(C)$ . And  $\mu(C) = \mu(A)$ , since  $A$  is nice. Fixing  $N$ , then, it suffices to establish  $\mathcal{U}(A) \leq \int f_N d\mu$ . But  $f_N$  is continuous, so

$$\int f_N d\mu = \limsup_{L \rightarrow \infty} \int f_N d\alpha_L \geq \limsup_{L \rightarrow \infty} \int \mathbf{1}_A d\alpha_L = \mathcal{U}(A). \quad \diamond$$

49: **Corollary.** Suppose  $\alpha_L \rightarrow \mu$  and partition  $P$  is  $\mu$ -nice. Then  $\mathcal{H}_{\alpha_L}(P) \rightarrow \mathcal{H}_\mu(P)$ .  $\diamond$

The **diameter** of partition  $P$  is  $\text{Max}_{A \in P} \text{Diam}(A)$ .

50: **Prop'n.** Take  $\mu \in \mathfrak{M}$  and  $\varepsilon > 0$ . Then there exists a  $\mu$ -nice partition with  $\text{Diam}(P) < \varepsilon$ .  $\diamond$

**Proof.** Centered at an  $x$ , the uncountably many balls  $\{\text{Bal}(x, r) \mid r \in (0, \varepsilon)\}$  have disjoint boundaries. So all but countably many are  $\mu$ -nice; pick one and call it  $B_x$ . Compactness gives a finite nice cover, say,  $\{B_1, \dots, B_7\}$ , at different centers. Then the partition  $P := (A_1, \dots, A_7)$  is nice,<sup>25</sup> where  $A_k := B_k \setminus \bigcup_{j=1}^{k-1} B_j$ .  $\diamond$

Here is a consequence of Jensen's Inequality.

51: **Distropy-averaging Lemma.** For  $\mu, \nu \in \mathfrak{M}$ , a partition  $R$ , and a number  $t \in [0, 1]$ :

$$t \cdot \mathcal{H}_\mu(R) + t^\ell \cdot \mathcal{H}_\nu(R) \leq \mathcal{H}_{t\mu + t^\ell \nu}(R). \quad \diamond$$

*Strategy for EntSup( $T$ )  $\geq \mathcal{E}_{\text{top}}(T)$ .* Choose an  $\varepsilon > 0$ . For  $L = 1, 2, 3, \dots$ , take a maximal  $(L, \varepsilon)$ -separated-set  $F_L \subset X$ , then define

$$F = F_\varepsilon := \limsup_{L \rightarrow \infty} \frac{1}{L} \cdot \log(|F_L|).$$

Let  $\varphi_L()$  be the equi-probable measure on  $F_L$ ; each point has weight  $1/|F_L|$ . We will construct our desired invariant measure  $\mu$  from the Cesàro averages

$$\alpha_L := \frac{1}{L} \cdot \sum_{\ell \in [0..L]} T^\ell \varphi_L,$$

which get more and more invariant.

52: **Lemma.** Let  $\mu$  be any weak-\* accumulation point of the above  $\{\alpha_L\}_1^\infty$ . (Automatically,  $\mu$  is  $T$ -invariant.) Then  $\mathcal{E}_\mu(T) \geq F$ . Indeed, if  $Q$  is any  $\mu$ -nice partition with  $\text{Diam}(Q) < \varepsilon$ , then  $\mathcal{E}_\mu(T, Q) \geq F$ .  $\diamond$

<sup>25</sup>For any two sets  $B, B' \subset X$ , the union  $\partial B \cup \partial B'$  is a superset of the three boundaries  $\partial(B \cup B')$ ,  $\partial(B \cap B')$ ,  $\partial(B \setminus B')$ .

**Tactics.** As usual,  $Q_{[0..N]}$  means  $Q_0 \vee Q_1 \vee \dots \vee Q_{N-1}$ . Our goal is

$$* : \quad \forall N : \quad \mathbf{F} \stackrel{?}{\leq} \frac{1}{N} \cdot \mathcal{H}_\mu(Q_{[0..N]}).$$

Fix  $N$  and  $P := Q_{[0..N]}$ , and a  $\delta > 0$ . It suffices to verify:  $\forall_{\text{large}} L \gg N$ ,

$$52' : \quad \frac{1}{L} \log(|F_L|) \stackrel{?}{\leq} \delta + \frac{1}{N} \cdot \mathcal{H}_{\alpha_L}(P),$$

since this and (49) will prove (\*): Pushing  $L \rightarrow \infty$  along the sequence that produced  $\mu$  essentially sends LhS(52') to  $\mathbf{F}$ , courtesy (39). And RhS(52') goes to  $\delta + \frac{1}{N} \cdot \mathcal{H}_\mu(P)$ , by (49), since  $P$  is  $\mu$ -nice. Descending  $\delta \searrow 0$ , hands us the needed (\*).  $\square$

**Proof<sup>26</sup> of (52').** Since  $L$  is frozen, agree to use  $\varphi$  for the  $\varphi_L$  probability measure.

Our  $d_L$ - $\varepsilon$ -separated set  $F_L$  has at most *one* point in any given atom of  $Q_{[0..L]}$ , thereupon

$$\log(|F_L|) = \mathcal{H}_\varphi(Q_{[0..L]}).$$

Regardless of the “offset”  $K \in [0..N]$ , we can always fit  $C := \lfloor \frac{L-N}{N} \rfloor$  many  $N$ -blocks into  $[0..L]$ . Denote by  $\mathcal{G}(K) := [K..K+CN]$ , this union of  $N$ -blocks, the **good** set of indices. Unsurprisingly,  $\mathcal{B}(K) := [0..L] \setminus \mathcal{G}(K)$  is the **bad** index-set. Therefore,

$$53 : \quad \mathcal{H}_\varphi(Q_{[0..L]}) \leq \overbrace{\mathcal{H}_\varphi(\bigvee_{j \in \mathcal{B}(K)} Q_j)}^{\text{Bad}(K)} + \overbrace{\mathcal{H}_\varphi(\bigvee_{j \in \mathcal{G}(K)} Q_j)}^{\text{Good}(K)}.$$

Certainly  $\text{Bad}(K) \leq 3N \log(|Q|)$ . So  $\frac{1}{NL} \sum_{K \in [0..N]} \text{Bad}(K) \leq \frac{3N}{L} \log(|Q|)$ . This is less than  $\delta$ , since  $L$  is large. Applying  $\frac{1}{NL} \sum_{K \in [0..N]}$  to (53) now produces

$$54 : \quad \frac{1}{L} \cdot \log(|F_L|) \leq \delta + \frac{1}{NL} \sum_K \text{Good}(K).$$

Note  $\bigvee_{j \in \mathcal{G}(K)} T^j(Q) = \bigvee_{c \in [0..C]} T^{K+cN}(P)$ . So  $\text{Good}(K) \leq \sum_c \mathcal{H}_\varphi(T^{K+cN}P)$ . This latter, by definition, equals  $\sum_c \mathcal{H}_{T^{K+cN}(\varphi)}(P)$ . We conclude that

$$\begin{aligned} \frac{1}{NL} \sum_K \text{Good}(K) &\leq \frac{1}{NL} \sum_K \sum_c \mathcal{H}_{T^{K+cN}\varphi}(P) \\ &\leq \frac{1}{NL} \sum_{\ell \in [0..L]} \mathcal{H}_{T^\ell\varphi}(P), \quad \text{by adjoining a few translates of } P, \\ &\leq \frac{1}{N} \cdot \mathcal{H}_{\alpha_L}(P), \quad \text{by the Distropy-averaging Lemma, (51),} \end{aligned}$$

since  $\alpha_L$  is the average  $\frac{1}{L} \sum_\ell T^\ell \varphi$ . Thus (54) implies (52'), our goal.  $\spadesuit$

---

<sup>26</sup>The idea is to mostly fill  $[0..L]$  with  $N$ -blocks, starting with a offset  $K \in [0..N]$ . Averaging over the offset will create a Cesàro average over each  $N$ -block. Averaging over the  $N$ -blocks will allow us to compute distropy with respect to the averaged measure,  $\alpha_L$ .

**Proof of  $\text{EntSup}(T) \leq \mathcal{E}_{\text{top}}(T)$ .** Fix a  $T$ -invariant  $\mu$ . For partition  $Q = (B_1, \dots, B_K)$ , choose a compact set  $A_k \subset B_k$  with  $\mu(B_k \setminus A_k)$  small.<sup>27</sup> Letting  $D := [\bigcup_i A_i]^c$  and  $P := (D, A_1, \dots, A_K)$ , we can have made  $\mathcal{H}(P | Q)$  as small as desired. Courtesy (23b), then, we only need consider partitions of the form that  $P$  has.

Open-cover  $\mathcal{V} := (U_1, \dots, U_K)$  has patches  $U_k := D \cup A_k$ . What atoms of, say,  $P_{[0..3]}$ , can the intersection  $U_9 \cap T^{-1}(U_2) \cap T^{-2}(U_5)$  touch? Only the eight atoms

$$(D \text{ or } A_9) \cap T^{-1}(D \text{ or } A_2) \cap T^{-2}(D \text{ or } A_5).$$

Thus  $\#P_{[0..n]} \leq 2^n \cdot \#\mathcal{V}_{[0..n]}$ . (Here,  $\#()$  counts the number of non-void atoms/patches.) So

$$\frac{1}{n} \mathcal{H}_\mu(P_{[0..n]}) \leq 1 + \frac{1}{n} \log(\#\mathcal{V}_{[0..n]}) \leq 1 + 1 + \mathcal{E}_{\text{top}}(T);$$

this last inequality, when  $n$  is large. The upshot:  $\mathcal{E}_\mu(T) \leq 2 + \mathcal{E}_{\text{top}}(T)$ .

Applied to a power  $T^\ell$ , this asserts that  $\mathcal{E}_\mu(T^\ell) \leq 2 + \mathcal{E}_{\text{top}}(T^\ell)$ . Thus

$$\mathcal{E}_\mu(T) \leq \frac{2}{\ell} + \mathcal{E}_{\text{top}}(T),$$

using (24d) and using (34g). Now coax  $\ell \rightarrow \infty$ . ◆

### Three recent results

Having given an survey of older results in measure-theoretic entropy and in topological entropy, let us end this survey with a brief discussion of a few recent results, chosen from many.

**Ornstein-Weiss: Finitely-observable invariant.** In a landmark paper [8, 2007], Ornstein and Weiss show that all “finitely observable” properties of ergodic processes are secretly entropy; indeed, they are continuous functions of entropy. This was generalized by Gutman and Hochman [9]; some of the notation below is from their paper.

Here is the setting. Consider an ergodic process, on a non-atomic space, taking on only finitely many values in  $\mathbb{N}$ ; let  $\mathcal{C}$  be some family of such processes. An **observation scheme** is a metric space  $(\Omega, d)$  and a sequence of functions  $S = (S_n)_1^\infty$ , where  $S_n$  maps  $\mathbb{N} \times \dots \times \mathbb{N}$  into  $\Omega$ . On a point  $\vec{x} \in \mathbb{N}^\infty$ , the scheme **converges** if

$$55: \quad n \mapsto S_n(x_1, x_2, \dots, x_n)$$

converges in  $\Omega$ . And on a particular process  $X$ , say that  $S$  **converges**, if  $S$  converges on a.e  $\vec{x}$  in  $X$ .

A function  $J: \mathcal{C} \rightarrow \Omega$  is isomorphism invariant if, whenever the underlying transformations of two processes  $X, X' \in \mathcal{C}$  are isomorphic, then  $J(X) = J(X')$ . Lastly, say that  $S$  “converges to  $J$ ”, if for each  $X \in \mathcal{C}$ , scheme  $S$  converges to the value  $J(X)$ .

<sup>27</sup>This can be done, since  $\mu$  is automatically a regular measure.

The work of David Bailey [38, 1976], a student of Ornstein, produced an observation scheme for entropy. The Lempel-Ziv algorithm [43] was another entropy observer, with practical application.

Ornstein and Weiss provided entropy schemes in [41] and [42]. Their recent paper “*Entropy is the only finitely-observable invariant*” [8, 2007], give a converse, a uniqueness result.

**56: Theorem (Ornstein, Weiss).** *Suppose  $J$  is a finitely observable function, defined on all ergodic finite-valued processes. If  $J$  is an isomorphism invariant, then  $J$  is a continuous function of the entropy.*  $\diamond$

Yonatan Gutman and Michael Hochman, in [9], significantly extend the Ornstein-Weiss result, by proving that it holds even when the isomorphism invariant,  $J$ , is well-defined only on certain subclasses of the set of all ergodic processes. In particular they obtain the following result on three classes of zero-entropy transformations.

**57: Theorem (Gutman, Hochman).** *Suppose  $J()$  is a finitely observable invariant on one of the following classes:*

*i: The Kronecker systems; the class of systems with pure point spectrum.*

*ii: The zero-entropy mild mixing processes.*

*iii: The zero-entropy strong mixing processes.*

*Then  $J()$  is constant.*  $\diamond$

**Entropy of actions of free groups.** Consider  $(G, \mathcal{G})$ , a topological group and its Borel field (sigma-algebra). Let  $\mathcal{G} \times \mathcal{X}$  be the field on  $G \times X$  generated by the two coordinate-subfields. A map

$\psi: G \times X \rightarrow X$  is **measurable** if  $\psi^{-1}(\mathcal{X}) \subset \mathcal{G} \times \mathcal{X}$ . Use  $\psi^g(x)$  for  $\psi(g, x)$ .

This map  $(*)$  is a (measure-preserving) **group action** if  $\forall g, h \in G: \psi^g \circ \psi^h = \psi^{gh}$ , and each  $\psi^g: X \rightarrow X$  is measure preserving.

This encyclopedia article has only discussed entropy for  $\mathbb{Z}$ -actions, i.e, when  $G = \mathbb{Z}$ . The ergodic theorem, our definition of entropy, and large parts of ergodic theory, involve taking averages (of some quantity of interest) over larger and larger “pieces of Time”. In  $\mathbb{Z}$ , we typically use the intervals  $I_n := [0 .. n]$ . When  $G$  is  $\mathbb{Z} \times \mathbb{Z}$ , we might average over squares  $I_n \times I_n$ .

The *amenable groups* are those which possess, in a certain sense, larger and larger averaging sets. Parts of ergodic theory have been carried over to actions of amenable groups, e.g [49] and [51]. Indeed, much of the Bernoulli theory was extended to certain amenable groups by Ornstein and Weiss, [50].

The stereotypical example of a *non*-amenable group, is a free group (on more than one generator). But recently, Lewis Bowen [10] succeeded in extending the definition of entropy to actions of finite-rank free groups.

**58: Theorem (Lewis Bowen).** *Let  $G$  by a finite-rank free group. Then two Bernoulli  $G$ -actions are isomorphic IFF they have the same entropy.* ◊

The paper introduces a new isomorphism invariant, the “ $f$  invariant”, and shows that, for Bernoulli actions, the  $f$  invariant agrees with entropy, that is, with the distropy of the independent generating partition.

## Conclusion

Ever since the pioneering work of Shannon, and of Kolmogorov and Sinai, entropy has been front and center as a major tool in Ergodic Theory. Simply *mentioning* all the substantial results in entropy theory would dwarf the length of this encyclopedia article many times over. And, as the above three results (cherry-picked out of many) show, Entropy shows no sign of fading away...

## §BIBLIOGRAPHY

[1] Citations to other articles in this Encyclopedia are made with the author’s name in double-brackets, e.g, [[Lemanczyk]], [[Petersen]].

### Historical

- [2] Rudolf Clausius, *Abhandlungen ueber die mechanische Waermetheorie*, vol. 1, (F. Vieweg, Braunschweig, 1864); vol. 2, (1867).
- [3] Claude Elwood Shannon, *A Mathematical Theory of Communication*, Bell Syst. Tech. J., 27, pp. 379–423, pp. 623–656, (1948).
- [4] A.N. Kolmogorov, *A New Metric Invariant of Transitive Automorphisms of Lebesgue Spaces*, Dokl. Akad. Nauk SSSR119, no. 5, pp. 861–864, (1958).
- [5] Ya. Sinai, *On the Concept of Entropy of a Dynamical System*, Dokl. Akad. Nauk SSSR124, pp. 768–771, (1959).
- [6] B. McMillan, *The Basic Theorems of Information Theory*, Ann. Math. Stat.24, pp. 196–219, (1953).
- [7] Roy Adler and Benjamin Weiss, *Entropy, a complete metric invariant for automorphisms of the torus*, Proc. Nat. Acad. Sci. USA, vol. 57, pp. 1573–1576, (1967).

### Recent Results

- [8] D.S. Ornstein and B. Weiss, *Entropy is the only finitely-observable invariant* J. of Modern Dynamics, vol. 1, (2007), pp. 93–105. <http://www.math.psu.edu/jmd>
- [9] Yonatan Gutman and Michael Hochman, *On processes which cannot be distinguished by finitary observation* to appear in Israel Journal of Mathematics. Preprint at <http://arxiv.org/pdf/math/0608310>

[10] Lewis Bowen, *A new measure-conjugacy invariant for actions of free groups* Preprint at <http://www.math.hawaii.edu/%7Elbowen/notes11.pdf>

### Ergodic Theory books

[11] Michael Brin, Garrett Stuck, *Introduction to dynamical systems*, Cambridge University Press, (2002).

[12] I. Cornfeld, S. Fomin, Ya. Sinai, *Ergodic theory*, Grundlehren der Mathematischen Wissenschaften, 245. Springer-Verlag, New York, (1982).

[13] Nathaniel A. Friedman, *Introduction to Ergodic Theory*, Van Nostrand Reinhold, (1970).

[14] Paul R. Halmos, *Lectures on Ergodic Theory*. The Mathematical Society of Japan, (1956).

[15] Anatole Katok, Boris Hasselblatt, *Introduction to the modern theory of dynamical systems. (With a supplementary chapter by Katok and Leonardo Mendoza)*, Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, (1995).

[16] G. Keller, A. Greven and G. Warnecke (eds), *Entropy*, Princeton Series in Applied Mathematics, Princeton University Press (2003).

[17] Doug Lind, Brian Marcus, *An introduction to symbolic dynamics and coding*, Cambridge University Press, Cambridge, (1995).

[18] R. Mané. *Ergodic theory and differentiable dynamics*. Ergebnisse der Mathematik und ihrer Grenzgebiete; ser.3, Bd. 8. Springer-Verlag, Berlin, (1987).

[19] William Parry, *Entropy and Generators in Ergodic Theory*, W.A. Benjamin, (1969).

[20] Karl Petersen, *Ergodic theory*. Cambridge Univ. Press, Cambridge, (1983).

[21] Daniel J. Rudolph, *Fundamentals of Measurable Dynamics*, Clarendon Press, (1990).

[22] Peter Walters, *An introduction to ergodic theory*, Graduate Texts in Mathematics, no. 79, Springer, (1982).

[23] Ya.G. Sinai. *Topics in ergodic theory*, volume 44 of *Princeton Mathematical Series*. Princeton University Press, Princeton, NJ, (1994).

### Differentiable entropy

[24] Ya.B. Pesin. *Characteristic Lyapunov exponents and smooth ergodic theory*. Russ. Math. Surveys, 32:55–114, (1977).

[25] L.-S. Young, *Dimension, entropy and Lyapunov exponents*, Ergodic Theory and Dynamical Systems, 2, (1982), no. 1, pp. 109–124.

[26] F. Ledrappier and L.-S. Young, *The metric entropy of diffeomorphisms*, Ann. of Math., (2) 122, (1985), pp. 509–539 (I) and pp. 540–574 (II).

### Finite rank

[27] S. Ferenczi, *Systems of finite rank*, Colloq. Math., 73, (1997), no. 1, pp. 35–65.

[28] J.L.F. King, *Joining-rank and the structure of finite rank mixing transformations*, *J. Analyse Math.*, vol. **51**, (1988), pp. 182–227.

### Maximal-entropy measures

[29] J. Buzzi and S. Ruette, *Large entropy implies existence of a maximal entropy measure for interval maps*, *Discrete Contin. Dyn. Syst.*, **14**, (2006), no. 4, pp. 673–688.

[30] M. Denker, *Measures with maximal entropy*, *Théorie ergodique Actes Journées Ergodiques, Rennes, 1973/1974*, pp. 70–112. Lecture Notes in Math., vol. 532, Springer, Berlin, (1976).

[31] M. Misiurewicz, *Diffeomorphism without any measure with maximal entropy*, *Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.* **21**, (1973), pp. 903–910.

### Topological entropy

[32] R.L. Adler, A.G. Konheim, M.H. McAndrew, *Topological Entropy*, *Transactions of the American Mathematical Society*, vol. **114**, no. 2, (Feb., 1965), pp. 309–319.

[33] E.I. Dinaburg, *The relation between topological entropy and metric entropy*, *Soviet Math. Dokl.* vol. **11**, (1970), pp. 13–16.

[34] Rufus Bowen, *Entropy for group endomorphisms and homogeneous spaces*, *Transactions, American Mathematical Society*, vol. **153**, (1971), pp. 401–414, erratum, **181**(1973) pp. 509–510.

[35] Rufus Bowen, *Topological entropy for noncompact sets*, *Transactions, American Mathematical Society*, vol. **184**, (1973), pp. 125–136.

[36] Roy Adler, Brian Marcus, *Topological entropy and equivalence of dynamical systems*, *Mem. Amer. Math. Soc.*, vol. **20**, (1979), no. 219.

[37] Boris Hasselblatt, Zbigniew Nitecki, James Propp, *Topological entropy for non-uniformly continuous maps*, <http://www.citebase.org/abstract?id=oai:arXiv.org:math/0511495>, (2005).

### Determinism and Zero-entropy, and entropy observation

[38] David Bailey. *Sequential schemes for classifying and predicting ergodic processes*. Stanford University, (1976). Ph.D. Dissertation.

[39] J.L.F. King, *Dilemma of the sleeping stockbroker*, *The American Mathematical Monthly*, **99**, no. 4, (1992), pp. 335–338.

[40] S. Kalikow and J.L.F. King, *A countably-valued sleeping stockbroker process*, *Journal of Theoretical Probability*, vol. **7**, no. 4, (1994), pp. 703–708.

[41] Donald S. Ornstein and Benjamin Weiss, *How sampling reveals a process*. *Ann. Probab.*, **18**(3):905–930, (1990).

[42] Donald S. Ornstein and Benjamin Weiss, *Entropy and data compression schemes*. *IEEE Trans. Inform. Theory*, **39**(1):78–83, (1993).

[43] Jacob Ziv and Abraham Lempel. *A universal algorithm for sequential data compression*. *IEEE Trans. Information Theory*, **IT-23**(3):337–343, (1977).

### Bernoulli Transformations, K-automorphisms, Amenable groups

- [44] L.D. Meshalkin, *A Case of Isomorphism of Bernoulli Schemes*, Dokl. Akad. Nauk SSSR 128, pp. 41–44, (1959).
- [45] Ya.G. Sinai, *A Weak Isomorphism of Transformations Having an Invariant Measure*, Dokl. Akad. Nauk. SSSR 147, pp. 797–800, (1962), [MR 161960](#), [Zbl 0205.13501](#).
- [46] Donald S. Ornstein, *Bernoulli Shifts with the Same Entropy Are Isomorphic*, Adv. Math., 5, pp. 337–352, (1970).
- [47] Paul Shields. *The Theory of Bernoulli Shifts*, University of Chicago Press, Chicago and London, (1973).
- [48] Donald S. Ornstein, *Ergodic Theory Randomness and Dynamical Systems*, Yale Math. Monographs, vol. 5, Yale University Press, (1974), [MR 447525](#), [Zbl 0296.28016](#).
- [49] D.S. Ornstein and B. Weiss, *The Shannon-McMillan-Breiman Theorem For A Class Of Amenable Groups*, Isr. J. Math., vol. 44, no. 3, (1983), pp. 53–60.
- [50] D.S. Ornstein and B. Weiss, *Entropy and isomorphism theorems for actions of amenable groups*, J. Analyse Math., vol. 48, (1987) pp. 1–141.

### Abramov Formula

- [51] T. Ward and Q. Zhang, *The Abramov-Rohlin entropy addition formula for amenable group actions*, Monatsh. Math, 114, (1992), pp. 317–329.

### Miscellaneous

- [52] S.E. Newhouse. *Continuity properties of entropy*, Annals of Mathematics, 129:215–235, (1989). Also Ann. of Math. 131, (1990), pp. 409–410.
- [53] Wikipedia, <http://en.wikipedia.org/wiki/> pages: Spectral\_radius, Information\_entropy.
- [54] Walter Rudin, *Functional Analysis*, McGraw-Hill, (1973).

Filename: Problems/Dynamics/Entropy/entr.biblio.latex  
 As of: Friday 13Jul2007. Typeset: 4May2008 at 0:900:20.