

Staple!

Name: _____

Ord: _____

Sets and Logic
MHF3202 7860 IndividualOP-D Prof. JLF King
Wedn 17Apr2024

This IOP is due **2PM, Thurs., 25Apr2024**, slid *completely* under my office door, 402 LITTLE HALL.

Print [this sheet](#), which is “Page 1/N”, and number your write-up as “page 2/N”, “page 3/N” … “Page N/N”.

Your 4 essay(s) must be TYPED, and (if possible) Double spaced. Use the Print/Revise cycle to produce good, well thought out, essays. Start each essay on a NEW sheet of paper. Do not restate the problem; just solve it.

D1: Interval-of-integers $\mathbf{J} := [201..300)$ has 99 elements. A subset $S \subset \mathbf{J}$ is **Big** if $|S| = 51$. Subset $S \subset \mathbf{J}$ is **Perfect** if there exist *distinct* members $x, y \in S$ st. $x + y = 500$.

Prove that **Big** \Rightarrow **Perfect**. [Hint: PHP. Carefully specify what your pigeon-holes are.]

D2: [For free: **Union Thm**: *A countable union of countable-sets is countable*. Also, **Finite-subset Thm**: *The collection of finite subsets of a countable set, is countable*. If needed, use $\mathcal{P}_{\text{Fin}}(S)$ for the collection of *finite* subsets of a set S , and use $\mathcal{P}_{\infty}(S)$ for the collection of *infinite* subsets of S .] Below, a **blip** is an *infinite* set of natnums. A **family**, \mathcal{F} , is a set [not a multiset] of blips, i.e., $\mathcal{F} \subset \mathcal{P}_{\infty}(\mathbb{N})$.

i Suppose, $\forall B, C \in \mathcal{F}$, that $[B \neq C] \Rightarrow [B \cap C = \emptyset]$. Construct, with proof, an *injection* $g: \mathcal{F} \rightarrow \mathbb{N}$, showing that each such family, \mathcal{F} , must only be countable. **ii** Weaken

the hypothesis on \mathcal{F} to:

$$\forall B, C \in \mathcal{F}: [B \neq C] \Rightarrow |B \cap C| \leq 1.$$

Prove that each such \mathcal{F} is tiny; only countable.

Weaken to $[B \neq C] \Rightarrow |B \cap C| \leq 2$, yet still prove \mathcal{F} countable. Weaken further to $[B \neq C] \Rightarrow |B \cap C| \leq 3$ and prove $|\mathcal{F}| \leq \aleph_0$ still holds. *Generalize!*

iii [Creative; A converse.] Construct a *specific* uncountable family $\mathcal{U} \subset \mathcal{P}_{\infty}(\mathbb{N})$, so that:

For all distinct $B, C \in \mathcal{U}$: *Intersection $B \cap C$ is finite.*

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: _____

D3: Consider \mathbf{S} , a set of 120 Students. Coincidentally, exactly 10 were born in **January**, exactly 10 in **February**, exactly 10 in **March**, …, exactly 10 in **December**.

Astonishingly, *exactly* 10 were born in *each* of the twelve years **2001, 2002, …, 2012**.

i Prove that *there exists* a set, T , of twelve Students whose birth-months are *all* twelve months, and whose birth-years are *all* twelve years.

ii Some N many Students depart, leaving a smaller group \mathbf{S}' with only $|\mathbf{S}'| = 120 - N$ many Students. With proof, what is the largest value of N where there still *must* exist a 12-set $T' \subset \mathbf{S}'$ representing all twelve months and all twelve years? This $N =$ _____.

D4: A polygamous community comprises 90 women and 91 men. Each man has at least one wife. Prove

†: There is a *married couple* such that the wife has more husbands than the husband has wives.

[The people are women and men, but the problem will use “girls” and “boys”, so that I can use letters W and H for wives and husbands.]

Guided soln: Use \mathbb{G} for set of 90 girls and \mathbb{B} for the set of 91 boys. For a $g \in \mathbb{G}$, let H_g be the number of husbands she has. So if *Ann* is married to *Tom*, *Sid* and *Abe*, then $H_{\text{Ann}} = 3$. For $b \in \mathbb{B}$, use W_b for the number of wives that boy b has.

Use a *double-colon* to indicate marriage, i.e., *Ann::Tom* indicates that *Ann* and *Tom* are married to each other.

Possible error: You might think the “average girl” has $\frac{91}{90}$ husbands, whereas the “average boy” has $\frac{90}{91}$ wives. Even if true, this does *not prove* that there is a *married-to-each-other couple* $g::b$ with $H_g > W_b$.

Suggestion: After any preliminary definitions, start your proof with: **FTSOContradiction**, suppose

‡: *each married couple* $g::b$ has $H_g \leq W_b$.

[A ✕ can be derived from Hall’s Matching Lemma, but a more direct argument exists. Consider small examples, e.g., $|\mathbb{G}| = 3$ and $|\mathbb{B}| = 4$. Is assumption that *each-boy-has-at-least-one-wife* necessary?]

DO SOMETHING EXTRA: E.g., with N women and $N+2$ men, what can you conclude about the \exists ence of a married couple? What if there are $2N - 1$ men?

Folks, I’ve had a wonderful time Problem-Solving with you. Stop by in future semesters for Math/chess/coffee.

Cheers, Coun-SELO-r King