
Complex Analysis homework.

by Energetic Plex Student, April 2023

Books. Use FC for First Course in Complex Analysis
by Matthias Beck, Gerald Marchesi, Dennis Pixton & Lucas
Sabalka.

Use B&C for Brown & Churchill. The exercise #s
in B&C have neither chapter-# nor section-#. So
we will disambiguate by using the first-page num-
ber where that exercise-block began. Eg. B&C#8P.22
is problem #8 in the section starting on P.22 in the
8th edition; the problem is actually on P.23. [And
complex-hw:BC.P22.08-.latex is the corresponding file.]

Use Ahl for Lars Ahlfors classic Complex Analysis
text.

Finally, there are a few problems I concocted or
altered, labeled jk . �
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Standing notation for Integration
The following notation will be used in the sequel. Fur-
ther below is a statement of the CIF (Cauchy Integral
Formula) and the generalized version.

Miscellaneous. Use both Möbius-trn and Möb-trn
to abbreciate ‘Möbius transformation’. An LFT (linear
fractional trn) and cross-ratio are two ways of describing
a Möbius-trn.

Recall: For a radius r>0, and a point p in met-
ric space (((X,m))) we defined open ball, closed ball,
sphere and punctured (open) ball as:

Balr(p) :=
{
w ∈ X

∣∣ m(w,p) < r
}

;

CldBalr(p) :=
{
w ∈ X

∣∣ m(w,p) ≤ r
}

;

Sphr(p) :=
{
w ∈ X

∣∣ m(w,p) = r
}

;

PBalr(p) :=
{
w ∈ X

∣∣ 0 < m(w,p) < r
}
. �

Contours. A contour S is an oriented curve in C
or Ĉ. I’ll use L,C, S,D,A for contours, usually using L
for a line-segment, and C for a closed contour (a loop,
which might self-intersect). A SCC [Simple-Closed-Contour]
is closed-contour that does not self-intersect, and is
positively oriented.

While C might be used for any contour (closed or not),
I’ll reserve Csubscript to mean the positively-oriented
circle about the origin with the specified (positive) ra-
dius. I.e, Cr := Sphr(0) .

For a SCC S, let S̊ be the (open) region enclosed by S.
Let ÙS := S t S̊, which is closed (indeed, compact). E.g,
C̊2 = Bal2(0) and C̃2 = CldBal2(0) �

Integrals. An integral on S is
´
S. [On a closed con-

tour, C, I might use
¸
C to emphasize that C is closed.

(Optional, as it sometimes makes the notation too “noisy”.)]
Fix a parametrization σ:[3, 5]→C of S. A contour

integral of fnc h has form
ˆ
S
h =

ˆ
S
h(z) dz

note
===

ˆ 5

3
h
(
σ(t)

)
σ′(t) dt .

In contrast, an arclength integral [abbrev. arclen-int]
is ˆ

S
h(z) |dz| =

ˆ 5

3
h
(
σ(t)

) ∣∣σ′(t) dt
∣∣ .

Since 5 ≥ 3, we can drop the abs-value around the dt,
and write the integral as

´ 5
3 h
(
σ(t)

) ∣∣σ′(t)∣∣ dt.
These integrals satisfy this inequality:∣∣∣ˆ

S
h(z) dz

∣∣∣ ≤ ˆ
S

∣∣h(z)
∣∣ · |dz| ≤ Max

z∈S

∣∣h(z)
∣∣ · Len(S)∗:

where the length of S is Len(S) =
´
S |dz|. Note (∗) is

analogous to
∣∣a1 + a2

∣∣ ≤ |a1|+ |a2| ≤ Max
j=1,2

|aj | · 2.

Consider a point p enclosed by a SCC C. If f is
holomorphic on ıC [i.e, C and the region it encloses] then

f(p) =
1

2πi

˛
C

f(z)

z − p
dz .CIF:

[CIF = Cauchy Integral Formula.] Differentiating n-times
under the integral sign yields

f (n)(p) =
n!

2πi

˛
C

f(z)

[z − p]n+1
dz .CIFn: �

[When I don’t choose to specify the n, I’ll use GCIF for
Generalized CIF.]

CIF locally.For a point p, let
˛
p
h(z) dz be the integral

around p on a circle whose radius, ε, is small enough
that the only h-singularity is (possibly) p. To make
specific, h is differentiable on PBal2ε(p). �
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Matrix convenience. Given two matrices M and K,
write M

×nzc
_ K if I can multiplyM by some complex

µ 6=0 to produce K. [So ‘× nzc’ stands for ‘times non-zero
constant’.]

E.g
[
2+i
3

] ×nzc
_

[
2i−1
3i

]
since i·

[
2+i
3

]
equals

[
2i−1
3i

]
.

Also,
[

3
0

] ×nzc
_

[
π+7i
0

]
. An example with 2×2 matri-

ces is [
3i 2
0 i− 4

]
×nzc
_

[
3 2i
0 1 + 4i

]
,

since i times the LH-matrix gives the RH-matrix. �
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B&C#3Ex.P.12. Polynomial P (z) :=
∑N
j=0 cjz

j has
degree N≥1. Prove there exists R>0 such that∣∣∣ 1

P (z)

∣∣∣ < 2

|cN | ·RN
, ∀z with |z| > R.†:

B&C#8P.22. Non-zero complex P ,Q have equal mod-
uli IFF ∃µ,ν ∈ C with P = µν and Q = µν. [When
these two equalities hold, say (((µ, ν))) makes (((P,Q))).]

Filename: Problems/Analysis/Calculus/complex-hw.JK.latex



Prof. JLF King Chapter 2 Page 5 of 31

Chapter 2

FC#2.16P.30. Prove, if f(z) is given by a polynomial
in z, that f is entire.

What can you say if f(z) is given by a polynomial
in x = Re(z) and y = Im(z)?

FC#2.17P.30. (Dis)Prove:
A: If u and v are real valued and continuous, then

f = u + iv is continuous
B: If u and v are R×R-differentiable then f := u+iv

is (complex) differentiable.

Filename: Problems/Analysis/Calculus/complex-hw.JK.latex
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FC#2.22P.30. Suppose f is entire and can be written
as f(z) = u(x) + iv(y), i.e, the real part of f depends
only on x = Re(z) and the imaginary part of f de-
pends only on y = Im(z). Prove that f(z) = az + β
for some a ∈ R and β ∈ C.

FC#2.23P.30. Suppose f is entire, with real and
imaginary parts u and v satisfying u() · v() ≡ 3.
Prove f is constant.

Filename: Problems/Analysis/Calculus/complex-hw.JK.latex
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FC#2.25bP.30. For u(x, y) := cosh(y)·sin(x) find a
real-valued v(x, y) st u+ vi in holomorphic in some
region.

FC#2.25cP.30. For u(x, y) := 2x2 + x+ 1− 2y2 find
a real-valued v(x, y) st u+ vi in holomorphic in some
region.

Filename: Problems/Analysis/Calculus/complex-hw.JK.latex
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FC#2.25dP.30. For u(x, y) := x
x2+y2

find a real-
valued v(x, y) such that u+ vi in holomorphic in some
region. Maximize that region.

FC#2.27P.30. With A,B,C ∈ R, consider the homo-
geneous quadratic u(x, y) := Ax2 +Bxy + Cy2. Find
an IFF condition on A,B,C making u harmonic.

With u harmonic, compute the complex number M
such that u is the real part of z 7→Mz2.

Filename: Problems/Analysis/Calculus/complex-hw.JK.latex
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Chapter 3

FC#3.03P.48. For reals α, P,Q, ω, consider equation

α[x2 + y2] + Px+Qy + ω = 0†:

in R×R. Show that (†) describes a gencircle [i.e, a
circle-or-line; a generalized-circle] IFF

P 2 +Q2 > 4αω .∗:

FC#3.05P.48. Prove that each Möbius transforma-
tion f(z) = az+ b

cz+ d
different from the identity-map, has

at most two fixed-points. [Recall a Möbius-trn requires
that determinant ∆ 6= 0, where ∆ := ad− bc.]

Filename: Problems/Analysis/Calculus/complex-hw.JK.latex
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FC#3.09P.48. Fix v ∈ C with |v| < 1 and consider

fv(z) :=
z − v

1 − vz
.†:

a: Prove fv is a Möbius transformation.

b: Show fv
1 = f v.

c: Prove fv maps the unit ball B to itself bijectively.

FC#3.16P.48. Find a Möbius transformation h()
that preserves C1, with h(0) = 1

2 .

Filename: Problems/Analysis/Calculus/complex-hw.JK.latex
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FC#3.23P.48. Given A ∈ Rr{0}, let L be the y = A
line. Show that the image of L under inversion is the
circle with center i

2A and radius 1
2A .

Remark. A small oversight: The radius is 1

2· |A|
.

Parameterize the image-circle, C, by F (t) := 1
t+Ai .

[Let’s solve the problem without knowledge of the
center& radius that the problem gave.]

One approach: Use F to compute the curvature of C;
its reciprocal is the radius.

Another approach: Compute the C tangent-line and
orthogonal line at different points F (t0) and F (t1).
The intersection of the two ortho-lines is C’s center.�
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FC#3.27P.48. In R3, consider the plane H deter-
mined by x+ y − z = 0. What is a unit normal-vec-
tor to H? In Riemann-sphere RS, compute the image
of H ∩ RS under stereographic projection S().

Filename: Problems/Analysis/Calculus/complex-hw.JK.latex
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Chapter 4

FC#4.1dP.68. Compute the arclength, L, of cycloid
σ(t) := t − ie it for one roll, 0 ≤ t ≤ 2π.

Predictions. [First, we sketch the cycloid arch. At multiples
of 2π, the parametrization must have zero-vel. not because we
differentiated σ, but rather because that is where the moving
wheel-point touches the ground, and the ground ain’t moving’.]

The arch has symmetry about the vertical line at
t=π. A picture shows that the half-arch, L

2 , should

satisfy π < L
2 < 1 + π Using the diagonal, we

obtain a better lower bound;
√

12 + π2 < L
2 . �
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FC#4.05P.68. Around circle C := CR, integrate:
ϕ(z) := z2 − 2z + 3, f(z) := z + z, g(z) := 1/z4 and
h(x+ iy) := xy.

Prelim. Parametrize C by
�� ��σ(t) := Reit . �

FC#4.11P.68. Let I(k) := 1
2π

´ 2π
0 eikt dt.

i : Show I(0) = 1.

ii : Show I(k) = 0 for each non-zero integer k.

iii : Compute I(12).
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FC#4.23P.68. Prove that ∼G is an equivalence rela-
tion.

FC#4.25P.68. Prove that each closed path is C-
contractible. Prove that each two closed paths are
C-homotopic.

Filename: Problems/Analysis/Calculus/complex-hw.JK.latex
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Several FC probs use the same idea. Recall
Cr := Sphr(0) .

1: Recip-polynomial lemma. For a polynomial f(z) of
degree N≥2 take an R large enough that all of f ’s
roots lie inside CR. Then

J :=

˛
CR

1

f(z)
dz = 0 . ♦

Proof. There is some κ>0 so that, for all large r,
our

∣∣f(z)
∣∣ > |z|N ·κ when z ∈ Cr. For r≥R, the CHT

(Cauchy Homotopy Thm) gives CR ∼ Cr on the punctured
plane. Thus

|J | CHT
====

∣∣∣˛
Cr

1

f(z)
dz
∣∣∣ ≤ Len(Cr) Max

z∈Cr

1∣∣f(z)
∣∣

≤ 2πr · 1

rN · κ
=

Const

rN−1
.

This last →0 as r↗∞, since N≥2. �

FC#4.29P.68. Show that
ˆ
C2

dz

z3 + 1
is zero.

FC#4.35P.68. For r = 1,3,5, compute

Jr :=

˛
Cr

dz

z2 − 2z − 8
dz .

FC#4.34P.68. LetSr := Sphr( 2i). For each r 6= 1,3,

compute Jr :=

˛
Sr

dz

z2 + 1
.
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FC#4.37P.68. With Cr := Sphr(0) and S:=Sph2( 1),
compute these four integrals: [CIF solves all four.]

a:
˛
S

z2

4 − z2
dz, b:

˛
C1

sin(z)

z
dz.

c:
˛
C2

exp(z)

z [z − 3]
dz d:

˛
C4

exp(z)

z [z − 3]
dz

Filename: Problems/Analysis/Calculus/complex-hw.JK.latex
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FC#4.30P.68. Compute J :=

ˆ 2π

0

1

2 + sin(θ)
dθ. jk#Trig-CoVP.. Consider integral

J :=

ˆ 2π

0

cos(θ) · cos(3θ)

2 + sin(2θ)
dθ∗:

Integrating around the unit circle, J equals
¸ f(z)
g(z) dz,

for which polynomials f and g ? [Hint: CoV z = eiθ.]

Recall. CoV z := eiθ transforms [0, 2π] into U, the
unit-circle. Moreover, for

�� ��k ∈ Z :

dθ=
dz

iz
,

cos(θ)= 1
2 [z + 1

z ] =
z2 + 1

2z
, cos(kθ) =

z2k + 1

2zk
,

sin(θ)= 1
2i [z −

1
z ] =

z2 − 1

2iz
, sin(kθ) =

z2k − 1

2izk
.

2a:

Thus a
´ 2π
0 integral of a rational function of cos(kθ)

and sin(`θ) is transformed, by the CoV, into a
´
U inte-

gral of a rational fnc of z. Factoring the denominator
gives the poles of the integrand, so we can apply CIF,
equivalently, the Residue thm. �
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FC#4.31P.68. Prove for, 0 ≤ r < 1, that

1

2π

ˆ 2π

0

1 − r2

1 − 2 r cos(θ) + r2
dθ = 1 .†:

[The function Pr(θ) := 1 − r2

1− 2rcos(θ)+ r2
is the Poisson ker-

nel. It plays an important role in the world of harmonic func-
tions, as in Exercise #6.13P.89.]

Proof. With U := C1 the unit circle, we seek to write
the given (†)-integral as a

¸
U integral, then apply CIF.

Letting z := eiθ, recall 2 cos(θ) = z + z 1, making
the (†)-integrand

1 − r2

1 − r [z + z 1] + r2

×
z

z====
[1 − r2] z

z − r [z2 + 1] + r2z

factor denom
===========

[1 − r2] z

[z − r] · [1− rz]
.

Equality
dz

dθ
= i·z gives dθ = 1

iz dz , rewriting
the (†)-integral as
˛
U

[1 − r2] · z
[z − r][1− rz]

·

dθ︷ ︸︸ ︷
1

iz
dz =

1

i

˛
U

1 − r2

[z − r][1− rz]
dz

=
1

i

˛
U

V(z)

z − r
dz ,

where V(z) :=
1 − r2

1 − rz
. The Cauchy Integral For-

mula now gives

LhS(†) =
1

2π
· 1

i

˛
U

V(z)

z − r
dz

CIF
=== V(r)

note
=== 1 . �

3: Poisson kernel. With P := R×R be the
plane, P◦ := P r {(((1, 0)))} the punctured plane, inter-
pret Poisson kernel Pr(θ) in polar coordinates. We
argue, further below, that

Pr(θ)
z = reiθ
======= Re

(1 + z

1− z

)
.3a:

Hence we view the Poisson kernel as a map P◦→R. �

jk#Poisson kernel is harmonicP.. Prove that
Poisson kernel (((r, θ))) 7→ Pr(θ), interpreted as a polar-
coordinate map P◦→R, is harmonic.

Proof. We could apply the polar Laplace operator

∆u = 1
rur + urr + 1

r2
uθθ ,3b:

but there is a shorter, elegant approach.

Fnc z 7→ 1+z
1−z is analytic on P◦, so H(z) := Re

(
1+z
1−z

)
is harmonic, making H(reiθ)

?
= Pr(θ) our goal. Since

1 + z

1− z
=

1 + z

1− z
· 1−z

1−z =
1 − zz + [z − z]
1 + zz − [z + z]

,

substitution z = reiθ with r,θ real, produces
1 + z

1− z
=

1 − r2 + 2·isin(θ)

1 + r2 − 2 · cos(θ)
.

Taking real-parts finishes the proof. �
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Harmonic with bndry condition. On unit cir-
cle U, fix a cts fnc f :U→C. Define companion fnc
If : [P r U]→C by

If (reiθ) =
1

2π

ˆ 2π

0
Pr(θ − t) · f(eit) dt

=
1

2π

ˆ 2π

0

1 − r2

1 − 2 r cos(θ − t) + r2
· f(eit) dt .

3c:

Our If () is well-defined for r 6=1. �

jk#Companion is harmonicP.. If the above f is
real-valued on U, prove that If of (3c) is harmonic.

3d: Lemma. Suppose f :ıU→C is analytic. Prove that
companion fnc If , (3c), equals f on open-ball Ů. ♦
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jk#Matching a boundary conditionP.. For a cts
f :P◦→R, prove that companion fnc If of (3c) has ra-
dial limits equaling f .
Unfinished: as of 18Mar2024
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FC#4.32P.68. Suppose f and g are holomorphic
in region G, and γ is a simple piecewise smooth
G-contractible path. Prove: If f=g on γ, then
f(z) = g(z) for all z lying inside γ.

Filename: Problems/Analysis/Calculus/complex-hw.JK.latex
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Chapter 5

FC#5.01P.79. Let R be the ±[4± 4i] square, posi-

tively oriented . Compute I :=

“
R

exp(z2)

z3
dz. Com-

pute J :=

“
R

exp(z) cos(z)

[z − π]3
dz.

FC#5.13P.79. Suppose f is entire and
∣∣f(z)

∣∣ ≤ √|z| ,
for all z ∈ C. Prove f is identically 0.

jk#GINTP.. Compute

J :=

˛
C7

e3z

[z − 2]9
dz .
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Chapter 7

FC#7.23P.108. Let fn(x) = n2x e nx.

a: Prove lim
n→∞

fn(x) = 0, for all x ≥ 0.

b: Find lim
n→∞

´ 1
0 fn .

c: Why doesn’t your answer to part (b) violate
Prop 7.27 [about unif-convergence of fncs]?

FC#7.26P.108. Find the power series, centered at the
origin, of each of the following functions.

a: cos(z) b: cos(z2) c: z2 sin(z) d:
[
sin(z)

]2.
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Chapter 8

jk#Laurent seriesP.. Compute the power-series
∞∑
n=0

Bnz
n for F (z) :=

1

z − 3
, on ball B := Bal3(0).

For F (), compute Laurent series
∞∑
n∈Z

Anz
n on an-

nulus A := Ann
3
∞(0).

Chapter 9

FC#9.21cP.141. On A :=
{
1 ≤ |z| ≤ 2

}
, a closed

annulus, how many zeros does f(z) := z4 − 5z + 1
have?
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Misc

Ahl#2P.123. For a posint N and R>0, entire fnc f

satisfies
∣∣f(z)

∣∣ ≤ |z|N , for each z
|·|
> R. Prove that

f(z) is a polynomial in z.

Ahl#3P.120. With C := Sph3(0), compute

Jp :=

ˆ
C

|dz|∣∣z − p
∣∣2

assuming that p /∈ C.

Predictions. At the origin, p = 0, we certainly expect

J0
should
=====

1

32
· 2π·3 =

6π

9
. [See (∗).]

Mapping p 7→ Jp is cts, and always positive. Finally,

lim
p→∞

Jp = 0 and lim
|p|→3

Jp = ∞ . �
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Ahl#5P.123. Show that the successive derivatives of
an analytic function at a point can never satisfy∣∣f (n)(p)

∣∣ > n!·nn. Formulate a sharper theorem of the
same kind.

jk#LoopyP.. Consider parametrization σ:[0, 2π]→C
by

σ(t) := [3 + cos(t)] · ei·2t

Compute J :=

˛
σ

exp(z + 4)

z [z − 3]
dz.
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jk1: Prove [[[Tz, Tq0, T q1, T q∞]]] = [[[z, q0, q1, q∞]]], for
each cross-ratio and each LFT T .

jk2: For distinct points b,c,d ∈ Ĉ, let ḃ,c,d mean
the gencirc they determine. Prove for each a ∈ Ĉ:
Point a lies in the gencirc IFF crossratio [[[a, b, c, d]]]
is (extended-)real.
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§A Appendix: Möbius

Möbius transformation

With Ĉ = C t {∞} denoting the extended complex-
plane (holomorphically equiv. to the Riemann Sphere) we
define the Möbius group (((M, ◦, IdĈ))); it is the auto-
morphism group of Ĉ. This M is the set functions de-
fined by LFTs or, equivalently, by CrossRatios. (Both
LFTs and CRs are defined below).

LFT. A linear fractional transformation is a
map

f(z) :=
az + b

cz + d
,

where a,b,c,d ∈ C
and ad− bc 6= 0.4a:

We will associate az+ b
cz+ d

with the 2×2 matrix [ a b
c d ],

whose determinant is Det([ a b
c d ]) = ad− bc. If the

LFT is understood, I may write Det to stand for the
corresponding ad− bc quantity.

LFT f(z) = az+ b
cz+ d

is a map Ĉ→Ĉ; from the ex-
tended plane to itself. Indeed,

f(∞) := lim
z→∞

az+ b
cz+ d

= a
c
. And f( d

c
) = ∞ .

N.B: In (4a), multiplying the four parameters by a
non-zero complex does not change the defined func-
tion. E.g 5a·z+5b

5c·z+5d is the same f(z) that (4a) defined.
Consequently, (4a) defines a 3-C-dim’al group [i.e, not
4-C-dim’al].

Normalizing. When numbers a,b,c,d are real:
LFT az+ b

cz+ d
is normalized if Det =1 and

If c6=0, then c > 0;
if c=0, then d > 0

.∗N:

In contrast, the LFT is “Z-normalized ” if a,b,c,d
are integers and GCD(a,b,c,d) = 1, and (∗N)
holds. So the Z-normalized presentation of 65z+20

10z+15

is
13z − 4

2z − 3
i.e,

13z + 4

2z + 3
.

And Z-normalizing z− 4
3/2 yields

2z + 8

3
.

Composition of LFTs. Consider LFTs

g(z) :=
αz + β

γz + δ
and f(z) :=

az + b

cz + d
.

One checks easily that their composition g ◦ f is the
LFT whose matrix is the matrix-product

[
α β
γ δ

][
a b

c d

]
note
===

[
αa + βc αb + βd
γa + δc γb + δd

]
.∗:

In general, LFT f ◦ g differs from g ◦ f ; unsurpriz-
ing, as matrix-mult is not commutative. One checks
that the product of the determinants of the matrices
on LhS(∗) equals Det

(
RhS(∗)

)
.

When the Det of M := [ a b
c d ] is non-zero, then

M 1 = 1
Det(M) ·

[
d b

c a

]
.

(Recall that multiplying a matrix by a scalar s simply multiplies
each entry by s. E.g 5 · [ a b

c d ] = [ 5a 5b
5c 5d ].) So the inverse-

fnc of the f of (4a) can be written as

f 1(z) =
dz − b

cz + a
.4b:

Generating M. Especially simple are the Trans-
lation, Dilation, and Inversion/Reciprocation LFTs:

Tτ := z 7→ z+τ ;

Dm := z 7→ mz;

R := z 7→ 1/z,

where τ ,m ∈ C withm 6=0. An arbitrary f(z) := az+ b
cz+ d

can be built from these, as follows.�� ��Case: c=0 LFT is a
d
z + b

d
; so f = Tb

d
◦ Da

d
.�� ��Case: c6=0 Normalize the LFT by ad− bc = 1;

so ad− 1
†:
= bc. We claim

f = Ta/c ◦ D 1/c2 ◦ R ◦ Td/c .‡:

Computing, RhS‡(z) = a
c

+ 1
c2
· 1
z+ d

c

. So c·RhS‡(a) is

a +
1

cz + d
=

acz + ad − 1

cz + d

by (†)
====

acz + bc

cz + d
,

which indeed equals c · az+ b
cz+ d

.
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Möbius group as quotient. The set of 2×2 ma-
trices with non-zero determinant has the anodyne
moniker of General Linear group. When the en-
tries come from C, it is written GL2×2(C).

Since multiplying a 2×2 matrix by a non-zero con-
stant does not change the LFT that the matrix deter-
mines, our Möbius group is the quotient

GL2×2(C)
/×nzc
_ ;

the set of equivalence classes.
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Cross ratio. [. . . is not an angry ratio] is an alternative
way of defining the Möbius group.

[[[z, q0, q1, q∞]]] :=
[z − q0][q1 − q∞]

[z − q∞][q1 − q0]
,
with q0,q1,q∞

distinct in Ĉ.
5:

When one of q0, q1, q∞ is ∞, we then interpret the
CR as a limit:

[[[z, ∞, q1, q∞]]] := lim
v→∞

[[[z, v, q1, q∞]]] =
0z+[q1−q∞]

z − q∞
;

[[[z, q0, ∞, q∞]]] := lim
v→∞

[[[z, q0, v, q∞]]] =
z − q0
z − q∞

;

[[[z, q0, q1, ∞]]] := lim
v→∞

[[[z, q0, q1, v ]]] =
z − q0

0z+ [q1−q0]
.

†:

With f(z) := [[[z, q0, q1, q∞]]], note that

f(q0) = 0 , f(q1) = 1 , f(q∞) = ∞ .

Etymology. In German, a cross-ratio was called a
Doppelverhältnis [double ratio] because . . .

[[[z, q0, q1, q∞]]]
note
===

z − q0
q1 − q0

/
z − q∞
q1 − q∞

,(5)′:

. . . it is a ratio of ratios. �

Crossratio↔LFT. As fncs of z ∈ Ĉ, suppose we
have equality

az + b

cz + d
= [[[z, q0, q1, q∞]]] .∗:

Computing a, b, c, d from the CR. When one
of q0, q1, q∞ is ∞, our (†) gives

a = 0, b = q1−q∞
c = 1, d = q∞

;

a = 1, b = q0
c = 1, d = q∞

;

a = 1, b = q0
c = 0, d = q1−q0

.

Otherwise, when none of q0, q1, q∞ is ∞, use this:

a = q1 − q∞ and b = [q∞ − q1]·q0 ,
c = q1 − q0 and d = [q0 − q1]·q∞ .

‡:

Computing q0, q1, q∞ from the LFT. Voila:

q0 = b/a ;

q1 = [d− b]/[a− c] ;

q∞ = d/c .

‡‡:

As usual, if a denominator is zero, interpret the
formulas by taking a limit. E.g, if a = 0 then b 6= 0
since Det 6= 0. Thus q0 = b

0 =∞. As expected, the
point that f(z)

note
=== b

cz+d maps to 0 is indeed z=∞.

Inverse-fnc of crossratio. Distinct points
r0,r1,r∞ ∈ C engender w = f(z) := [[[z, r0, r1, r∞]]].
We seek points q0, q1, q∞ ∈ Ĉ so that

z = f 1(w) := [[[w, q0, q1, q∞]]] .

A matrix for f is [ a b
c d ] from (‡). Hence, a matrix

for f 1 is
[
A B
C D

]
:= [ d b

c a ]. So (‡‡) and (‡) give

q0 =
B

A
=

b

d

note
===

[r1 − r∞]·r0
[r1 − r0]·r∞

note
=== q∞ ·

r0
r∞

;

q1 = D−B
A−C

= a+ b
d+ c

=
[r1 − r∞][1− r0]
[r1 − r0][1− r∞]

note
=== q∞ ·

1 − r0
1− r∞

;

q∞ =
D

C
note
===

a

c
=

r1 − r∞
r1 − r0

.

U:
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