

Complex Analysis homework.

by *Energetic Plex Student*, April 2023

Books. Use **FC** for *First Course in Complex Analysis* by Matthias Beck, Gerald Marchesi, Dennis Pixton & Lucas Sabalka.

Use **B&C** for *Brown & Churchill*. The exercise #'s in B&C have neither chapter-# nor section-#. So we will disambiguate by using the first-page number where that exercise-block began. Eg. B&C #8^{P.22} is problem #8 in the section starting on P.22 in the 8th edition; the problem is actually on P.23. [And `complex-hw:BC.P22.08-.tex` is the corresponding file.]

Use **Ahl** for *Lars Ahlfors* classic *Complex Analysis* text.

Finally, there are a few problems I concocted or altered, labeled **jk**. □

Standing notation for Integration

The following notation will be used in the sequel. Further below is a statement of the CIF (Cauchy Integral Formula) and the generalized version.

Miscellaneous. Use both Möbius-trn and Möb-trn to abbreviate ‘Möbius transformation’. An LFT (linear fractional trn) and cross-ratio are two ways of describing a Möbius-trn.

Recall: For a radius $r > 0$, and a point \mathbf{p} in metric space (\mathbf{X}, \mathbf{m}) we defined **open ball**, **closed ball**, **sphere** and **punctured (open) ball** as:

$$\begin{aligned}\text{Bal}_r(\mathbf{p}) &:= \{w \in \mathbf{X} \mid \mathbf{m}(w, \mathbf{p}) < r\}; \\ \text{CldBal}_r(\mathbf{p}) &:= \{w \in \mathbf{X} \mid \mathbf{m}(w, \mathbf{p}) \leq r\}; \\ \text{Sph}_r(\mathbf{p}) &:= \{w \in \mathbf{X} \mid \mathbf{m}(w, \mathbf{p}) = r\}; \\ \text{PBal}_r(\mathbf{p}) &:= \{w \in \mathbf{X} \mid 0 < \mathbf{m}(w, \mathbf{p}) < r\}. \quad \square\end{aligned}$$

Contours. A **contour** \mathbf{S} is an oriented curve in \mathbb{C} or $\widehat{\mathbb{C}}$. I’ll use $\mathbf{L}, \mathbf{C}, \mathbf{S}, \mathbf{D}, \mathbf{A}$ for contours, *usually* using \mathbf{L} for a line-segment, and \mathbf{C} for a closed contour (a loop, which might self-intersect). A **SCC** [Simple-Closed-Contour] is closed-contour that does not self-intersect, and is positively oriented.

While \mathbf{C} might be used for any contour (closed or not), I’ll reserve $\mathbf{C}_{\text{subscript}}$ to mean the positively-oriented *circle* about the *origin* with the specified (positive) radius. I.e., $\mathbf{C}_r := \text{Sph}_r(0)$.

For a SCC \mathbf{S} , let $\mathring{\mathbf{S}}$ be the (open) region enclosed by \mathbf{S} . Let $\widehat{\mathbf{S}} := \mathbf{S} \sqcup \mathring{\mathbf{S}}$, which is closed (indeed, *compact*). E.g., $\mathring{\mathbf{C}}_2 = \text{Bal}_2(0)$ and $\widehat{\mathbf{C}}_2 = \text{CldBal}_2(0)$ \square

Integrals. An integral on \mathbf{S} is $\int_{\mathbf{S}}$. [On a *closed* contour, \mathbf{C} , I might use $\oint_{\mathbf{C}}$ to emphasize that \mathbf{C} is closed. (Optional, as it sometimes makes the notation too “noisy”.)]

Fix a parametrization $\sigma: [3, 5] \rightarrow \mathbf{S}$. A **contour integral** of fnc \mathbf{h} has form

$$\int_{\mathbf{S}} \mathbf{h} = \int_{\mathbf{S}} h(z) \, dz \stackrel{\text{note}}{=} \int_3^5 h(\sigma(t)) \, \sigma'(t) \, dt.$$

In contrast, an **arclength integral** [abbrev. *arcLen-int*] is

$$\int_{\mathbf{S}} h(z) |dz| = \int_3^5 h(\sigma(t)) |\sigma'(t)| \, dt.$$

Since $5 \geq 3$, we can drop the abs-value around the dt , and write the integral as $\int_3^5 h(\sigma(t)) |\sigma'(t)| \, dt$.

These integrals satisfy this inequality:

$$* \quad \left| \int_{\mathbf{S}} h(z) \, dz \right| \leq \int_{\mathbf{S}} |h(z)| \cdot |dz| \leq \underset{z \in \mathbf{S}}{\text{Max}} |h(z)| \cdot \text{Len}(\mathbf{S})$$

where the length of \mathbf{S} is $\text{Len}(\mathbf{S}) = \int_{\mathbf{S}} |dz|$. Note (*) is analogous to $|a_1 + a_2| \leq |a_1| + |a_2| \leq \underset{j=1,2}{\text{Max}} |a_j| \cdot 2$.

Consider a point \mathbf{p} enclosed by a SCC \mathbf{C} . If f is holomorphic on $\widehat{\mathbb{C}}$ [i.e., \mathbf{C} and the region it encloses] then

$$\text{CIF:} \quad f(\mathbf{p}) = \frac{1}{2\pi i} \oint_{\mathbf{C}} \frac{f(z)}{z - \mathbf{p}} \, dz.$$

[CIF = Cauchy Integral Formula.] Differentiating n -times under the integral sign yields

$$\text{CIF}_n: \quad f^{(n)}(\mathbf{p}) = \frac{n!}{2\pi i} \oint_{\mathbf{C}} \frac{f(z)}{[z - \mathbf{p}]^{n+1}} \, dz. \quad \square$$

[When I don’t choose to specify the n , I’ll use **GCIF** for Generalized CIF.]

CIF locally. For a point \mathbf{p} , let $\oint_{\mathbf{p}} h(z) \, dz$ be the integral around \mathbf{p} on a circle whose radius, ε , is small enough that the only \mathbf{h} -singularity is (possibly) \mathbf{p} . To make specific, \mathbf{h} is differentiable on $\text{PBal}_{2\varepsilon}(\mathbf{p})$. \square

Matrix convenience. Given two matrices M and K , write $M \xrightarrow{\times \text{nzc}} K$ if I can multiply M by some complex $\mu \neq 0$ to produce K . [So ‘ \times nzc’ stands for ‘times non-zero constant’.]

E.g. $\begin{bmatrix} 2+i \\ 3 \end{bmatrix} \xrightarrow{\times \text{nzc}} \begin{bmatrix} 2i-1 \\ 3i \end{bmatrix}$ since $i \cdot \begin{bmatrix} 2+i \\ 3 \end{bmatrix}$ equals $\begin{bmatrix} 2i-1 \\ 3i \end{bmatrix}$. Also, $\begin{bmatrix} -3 \\ 0 \end{bmatrix} \xrightarrow{\times \text{nzc}} \begin{bmatrix} \pi+7i \\ 0 \end{bmatrix}$. An example with 2×2 matrices is

$$\begin{bmatrix} 3i & 2 \\ 0 & i-4 \end{bmatrix} \xrightarrow{\times \text{nzc}} \begin{bmatrix} 3 & -2i \\ 0 & 1+4i \end{bmatrix},$$

since $-i$ times the LH-matrix gives the RH-matrix. \square

B&C#3Ex. P.12. Polynomial $P(z) := \sum_{j=0}^N \mathbf{c}_j z^j$ has degree $N \geq 1$. Prove there exists $R > 0$ such that

$$\dagger: \quad \left| \frac{1}{P(z)} \right| < \frac{2}{|\mathbf{c}_N| \cdot R^N}, \quad \forall z \text{ with } |z| > R.$$

B&C#8P.22. Non-zero complex P, Q have equal moduli IFF $\exists \mu, \nu \in \mathbb{C}$ with $P = \mu\nu$ and $Q = \mu\bar{\nu}$. [When these two equalities hold, say (μ, ν) makes (P, Q) .]

Chapter 2

FC#2.16^P30. Prove, if $f(z)$ is given by a polynomial in z , that f is entire.

What can you say if $f(z)$ is given by a polynomial in $x = \operatorname{Re}(z)$ and $y = \operatorname{Im}(z)$?

FC#2.17^P30. (Dis)Prove:

A: If u and v are real valued and continuous, then $f = u + iv$ is continuous

B: If u and v are $\mathbb{R} \times \mathbb{R}$ -differentiable then $f := u + iv$ is (complex) differentiable.

FC#2.22^P30. Suppose f is entire and can be written as $f(z) = u(x) + iv(y)$, i.e, the real part of f depends only on $x = \operatorname{Re}(z)$ and the imaginary part of f depends only on $y = \operatorname{Im}(z)$. Prove that $f(z) = az + \beta$ for some $a \in \mathbb{R}$ and $\beta \in \mathbb{C}$.

FC#2.23^P30. Suppose f is entire, with real and imaginary parts u and v satisfying $u() \cdot v() \equiv 3$. Prove f is constant.

FC#2.25b^P30. For $u(x, y) := \cosh(y) \cdot \sin(x)$ find a real-valued $v(x, y)$ st $u + vi$ in holomorphic in some region.

FC#2.25c^P30. For $u(x, y) := 2x^2 + x + 1 - 2y^2$ find a real-valued $v(x, y)$ st $u + vi$ in holomorphic in some region.

FC#2.25d^P30. For $u(x, y) := \frac{x}{x^2+y^2}$ find a real-valued $v(x, y)$ such that $u + vi$ is holomorphic in some region. Maximize that region.

FC#2.27^P30. With $A, B, C \in \mathbb{R}$, consider the homogeneous quadratic $u(x, y) := Ax^2 + Bxy + Cy^2$. Find an IFF condition on A, B, C making u harmonic.

With u harmonic, compute the complex number M such that u is the real part of $z \mapsto Mz^2$.

Chapter 3

FC#3.03^{P.48.} For reals α, P, Q, ω , consider equation

$$\dagger: \quad \alpha[x^2 + y^2] + Px + Qy + \omega = 0$$

in $\mathbb{R} \times \mathbb{R}$. Show that (\dagger) describes a *gen circle* [i.e, a *circle-or-line*; a *generalized-circle*] IFF

$$*: \quad P^2 + Q^2 > 4\alpha\omega.$$

FC#3.05^{P.48.} Prove that each Möbius transformation $f(z) = \frac{az+b}{cz+d}$ different from the identity-map, has at most two fixed-points. [Recall a *Möbius-trn* requires that determinant $\Delta \neq 0$, where $\Delta := ad - bc$.]

FC#3.09^P48. Fix $\mathbf{v} \in \mathbb{C}$ with $|\mathbf{v}| < 1$ and consider

$$\dagger: \quad f_{\mathbf{v}}(z) := \frac{z - \mathbf{v}}{1 - \overline{\mathbf{v}}z}.$$

- a: Prove $f_{\mathbf{v}}$ is a Möbius transformation.
- b: Show $f_{\mathbf{v}}^{-1} = f_{-\mathbf{v}}$.
- c: Prove $f_{\mathbf{v}}$ maps the unit ball \mathbb{B} to itself bijectively.

FC#3.16^P48. Find a Möbius transformation $h()$ that preserves \mathbb{C}_1 , with $h(0) = \frac{1}{2}$.

FC#3.23^P48. Given $A \in \mathbb{R} \setminus \{0\}$, let L be the $y = A$ line. Show that the image of L under inversion is the circle with center $\frac{i}{2A}$ and radius $\frac{1}{2A}$.

Remark. A small oversight: The radius is $\frac{1}{2|A|}$.

Parameterize the image-circle, C , by $F(t) := \frac{1}{t + Ai}$.
[Let's solve the problem *without* knowledge of the center & radius that the problem gave.]

One approach: Use F to compute the curvature of C ;
its reciprocal is the radius.

Another approach: Compute the C tangent-line and
orthogonal line at different points $F(t_0)$ and $F(t_1)$.
The intersection of the two ortho-lines is C 's center. \square

FC#3.27^P48. In \mathbb{R}^3 , consider the plane H determined by $x + y - z = 0$. What is a unit normal-vector to H ? In Riemann-sphere RS , compute the image of $H \cap RS$ under stereographic projection $\mathcal{S}()$.

Chapter 4

FC#4.1d^P68. Compute the arclength, L , of cycloid $\sigma(t) := t - ie^{it}$ for one roll, $0 \leq t \leq 2\pi$.

Predictions. [First, we sketch the cycloid arch. At multiples of 2π , the parametrization must have zero-vel. *not* because we differentiated σ , but rather because that is where the moving wheel-point *touches the ground*, and *the ground ain't moving*.]

The arch has symmetry about the vertical line at $t=\pi$. A picture shows that the half-arch, $\frac{L}{2}$, should satisfy $\pi < \frac{L}{2} < 1 + \pi$. Using the diagonal, we obtain a better lower bound; $\sqrt{1^2 + \pi^2} < \frac{L}{2}$. \square

FC#4.05^P68. Around circle $\mathbf{C} := \mathbf{C}_R$, integrate:
 $\varphi(z) := z^2 - 2z + 3$, $f(z) := z + \bar{z}$, $g(z) := 1/z^4$ and
 $h(x + iy) := xy$.

FC#4.11^P68. Let $\mathcal{I}(k) := \frac{1}{2\pi} \int_0^{2\pi} e^{ikt} dt$.

i: Show $\mathcal{I}(0) = 1$.

ii: Show $\mathcal{I}(k) = 0$ for each non-zero integer k .

iii: Compute $\mathcal{I}(\frac{1}{2})$.

Prelim. Parametrize \mathbf{C} by $\boxed{\sigma(t) := R e^{it}}$. □

FC#4.23^P68. Prove that \sim_G is an equivalence relation.

FC#4.25^P68. Prove that each closed path is \mathbb{C} -contractible. Prove that each two closed paths are \mathbb{C} -homotopic.

Several FC probs use the same idea. Recall **FC#4.35^P68.** For $r = 1, 3, 5$, compute

$$\mathbf{C}_r := \text{Sph}_r(0).$$

1: Recip-polynomial lemma. For a polynomial $f(z)$ of degree $N \geq 2$ take an R large enough that all of f 's roots lie inside \mathbf{C}_R . Then

$$J := \oint_{\mathbf{C}_R} \frac{1}{f(z)} dz = 0. \quad \diamond$$

Proof. There is some $\kappa > 0$ so that, for all large r , our $|f(z)| > |z|^N \cdot \kappa$ when $z \in \mathbf{C}_r$. For $r \geq R$, the CHT (Cauchy Homotopy Thm) gives $\mathbf{C}_R \sim \mathbf{C}_r$ on the punctured plane. Thus

$$\begin{aligned} |J| &\stackrel{\text{CHT}}{=} \left| \oint_{\mathbf{C}_r} \frac{1}{f(z)} dz \right| \leq \text{Len}(\mathbf{C}_r) \max_{z \in \mathbf{C}_r} \frac{1}{|f(z)|} \\ &\leq 2\pi r \cdot \frac{1}{r^N \cdot \kappa} = \frac{\text{Const}}{r^{N-1}}. \end{aligned}$$

This last $\rightarrow 0$ as $r \nearrow \infty$, since $N \geq 2$. \diamond

FC#4.29^P68. Show that $\int_{\mathbf{C}_2} \frac{dz}{z^3 + 1}$ is zero.

$$J_r := \oint_{\mathbf{C}_r} \frac{dz}{z^2 - 2z - 8} dz.$$

FC#4.34^P68. Let $\mathbf{S}_r := \text{Sph}_r(-2i)$. For each $r \neq 1, 3$, compute $J_r := \oint_{\mathbf{S}_r} \frac{dz}{z^2 + 1}$.

FC#4.37^P68. With $\mathbf{C}_r := \text{Sph}_r(0)$ and $\mathbf{S} := \text{Sph}_2(-1)$,
compute these four integrals: [CIF solves all four.]

a: $\oint_{\mathbf{S}} \frac{z^2}{4 - z^2} dz,$

b: $\oint_{\mathbf{C}_1} \frac{\sin(z)}{z} dz.$

c: $\oint_{\mathbf{C}_2} \frac{\exp(z)}{z[z - 3]} dz$

d: $\oint_{\mathbf{C}_4} \frac{\exp(z)}{z[z - 3]} dz$

FC#4.30^P 68. Compute $J := \int_0^{2\pi} \frac{1}{2 + \sin(\theta)} d\theta$. jk#Trig-CoV^P. Consider integral

$$* : J := \int_0^{2\pi} \frac{\cos(\theta) \cdot \cos(3\theta)}{2 + \sin(2\theta)} d\theta$$

Integrating around the unit circle, J equals $\oint \frac{f(z)}{g(z)} dz$, for which polynomials f and g ? [Hint: CoV $z = e^{i\theta}$.]

Recall. CoV $z := e^{i\theta}$ transforms $[0, 2\pi]$ into \mathbb{U} , the unit-circle. Moreover, for $\boxed{k \in \mathbb{Z}}$:

$$\begin{aligned} d\theta &= \frac{dz}{iz}, \\ \text{2a: } \cos(\theta) &= \frac{1}{2}[z + \frac{1}{z}] = \frac{z^2 + 1}{2z}, \quad \cos(k\theta) = \frac{z^{2k} + 1}{2z^k}, \\ \sin(\theta) &= \frac{1}{2i}[z - \frac{1}{z}] = \frac{z^2 - 1}{2iz}, \quad \sin(k\theta) = \frac{z^{2k} - 1}{2iz^k}. \end{aligned}$$

Thus a $\int_0^{2\pi}$ integral of a rational function of $\cos(k\theta)$ and $\sin(\ell\theta)$ is transformed, by the CoV, into a $\int_{\mathbb{U}}$ integral of a rational fnc of z . Factoring the denominator gives the poles of the integrand, so we can apply CIF, equivalently, the Residue thm. □

FC#4.31^P68. Prove for, $0 \leq \mathbf{r} < 1$, that

$$\dagger: \quad \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - \mathbf{r}^2}{1 - 2\mathbf{r}\cos(\theta) + \mathbf{r}^2} d\theta = 1.$$

[The function $P_r(\theta) := \frac{1 - \mathbf{r}^2}{1 - 2\mathbf{r}\cos(\theta) + \mathbf{r}^2}$ is the **Poisson kernel**. It plays an important role in the world of harmonic functions, as in Exercise #6.13^P89.]

Proof. With $\mathbf{U} := \mathbf{C}_1$ the unit circle, we seek to write the given (\dagger) -integral as a $\oint_{\mathbf{U}}$ integral, then apply CIF.

Letting $z := e^{i\theta}$, recall $2\cos(\theta) = z + z^{-1}$, making the (\dagger) -integrand

$$\begin{aligned} \frac{1 - \mathbf{r}^2}{1 - \mathbf{r}[z + z^{-1}] + \mathbf{r}^2} &\stackrel{\times \frac{z}{z}}{=} \frac{[1 - \mathbf{r}^2]z}{z - \mathbf{r}[z^2 + 1] + \mathbf{r}^2z} \\ &\stackrel{\text{factor denom}}{=} \frac{[1 - \mathbf{r}^2]z}{[z - \mathbf{r}] \cdot [1 - \mathbf{r}z]}. \end{aligned}$$

Equality $\frac{dz}{d\theta} = \mathbf{i} \cdot z$ gives $d\theta = \frac{1}{iz} dz$, rewriting the (\dagger) -integral as

$$\begin{aligned} \oint_{\mathbf{U}} \frac{[1 - \mathbf{r}^2] \cdot z}{[z - \mathbf{r}][1 - \mathbf{r}z]} \cdot \underbrace{\frac{d\theta}{iz}}_{\mathbf{i}} dz &= \frac{1}{\mathbf{i}} \oint_{\mathbf{U}} \frac{1 - \mathbf{r}^2}{[z - \mathbf{r}][1 - \mathbf{r}z]} dz \\ &= \frac{1}{\mathbf{i}} \oint_{\mathbf{U}} \frac{V(z)}{z - \mathbf{r}} dz, \end{aligned}$$

where $V(z) := \frac{1 - \mathbf{r}^2}{1 - \mathbf{r}z}$. The Cauchy Integral Formula now gives

$$\text{LhS}(\dagger) = \frac{1}{2\pi} \cdot \frac{1}{\mathbf{i}} \oint_{\mathbf{U}} \frac{V(z)}{z - \mathbf{r}} dz \stackrel{\text{CIF}}{=} V(\mathbf{r}) \stackrel{\text{note}}{=} 1. \quad \blacklozenge$$

3: Poisson kernel. With $\mathbb{P} := \mathbb{R} \times \mathbb{R}$ be the plane, $\mathbb{P}^o := \mathbb{P} \setminus \{(1, 0)\}$ the punctured plane, interpret Poisson kernel $P_r(\theta)$ in *polar coordinates*. We argue, further below, that

$$3a: \quad P_r(\theta) \stackrel{z = re^{i\theta}}{=} \text{Re}\left(\frac{1+z}{1-z}\right).$$

Hence we view the Poisson kernel as a map $\mathbb{P}^o \rightarrow \mathbb{R}$. \square

jk#Poisson kernel is harmonic^P. Prove that Poisson kernel $(\mathbf{r}, \theta) \mapsto P_r(\theta)$, interpreted as a polar-coordinate map $\mathbb{P}^o \rightarrow \mathbb{R}$, is harmonic.

Proof. We could apply the polar Laplace operator

$$3b: \quad \Delta u = \frac{1}{r} u_r + u_{rr} + \frac{1}{r^2} u_{\theta\theta},$$

but there is a shorter, elegant approach.

Fnc $z \mapsto \frac{1+z}{1-z}$ is analytic on \mathbb{P}^o , so $H(z) := \text{Re}\left(\frac{1+z}{1-z}\right)$ is harmonic, making $H(re^{i\theta}) \stackrel{?}{=} P_r(\theta)$ our goal. Since

$$\frac{1+z}{1-z} = \frac{1+z}{1-z} \cdot \frac{1-\bar{z}}{1-\bar{z}} = \frac{1 - z\bar{z} + [z - \bar{z}]}{1 + z\bar{z} - [z + \bar{z}]},$$

substitution $z = re^{i\theta}$ with \mathbf{r}, θ real, produces

$$\frac{1+z}{1-z} = \frac{1 - \mathbf{r}^2 + 2 \cdot \mathbf{i} \sin(\theta)}{1 + \mathbf{r}^2 - 2 \cdot \cos(\theta)}.$$

Taking real-parts finishes the proof. \blacklozenge

Harmonic with bndry condition. On unit circle U , fix a cts fnc $f: U \rightarrow \mathbb{C}$. Define **companion fnc** $I_f: [\mathbb{P} \setminus U] \rightarrow \mathbb{C}$ by

$$\begin{aligned} I_f(re^{i\theta}) &= \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) \cdot f(e^{it}) dt \\ 3c: &= \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - r^2}{1 - 2r \cos(\theta - t) + r^2} \cdot f(e^{it}) dt. \end{aligned}$$

Our $I_f()$ is well-defined for $r \neq 1$. □

3d: Lemma. Suppose $f: \widehat{U} \rightarrow \mathbb{C}$ is analytic. Prove that companion fnc I_f , (3c), equals f on open-ball \mathring{U} . ◊

jk#**Companion is harmonic**^P. If the above f is real-valued on U , prove that I_f of (3c) is harmonic.

jk#**Matching a boundary condition**^P. For a cts $f: \mathbb{P}^o \rightarrow \mathbb{R}$, prove that companion fnc I_f of (3c) has radial limits equaling f .

Unfinished: as of 18Mar2024

FC#4.32^P68. Suppose f and g are holomorphic in region G , and γ is a simple piecewise smooth G -contractible path. Prove: If $f=g$ on γ , then $f(z) = g(z)$ for all z lying inside γ .

Chapter 5jk#**GIN**T^P. Compute

FC#5.01^P79. Let R be the $\pm[4 \pm 4i]$ square, positively oriented. Compute $\mathbf{I} := \oint_R \frac{\exp(z^2)}{z^3} dz$. Compute $\mathbf{J} := \oint_R \frac{\exp(z) \cos(z)}{[z - \pi]^3} dz$.

$$J := \oint_{C_7} \frac{e^{3z}}{[z - 2]^9} dz.$$

FC#5.13^P79. Suppose f is entire and $|f(z)| \leq \sqrt{|z|}$, for all $z \in \mathbb{C}$. Prove f is identically 0.

Chapter 7

FC#7.23^P108. Let $f_n(x) = n^2 x e^{-nx}$.

a: Prove $\lim_{n \rightarrow \infty} f_n(x) = 0$, for all $x \geq 0$.

b: Find $\lim_{n \rightarrow \infty} \int_0^1 f_n$.

c: Why doesn't your answer to part (b) violate Prop 7.27 [about unif-convergence of fncs]?

FC#7.26^P108. Find the power series, centered at the origin, of each of the following functions.

a: $\cos(z)$ b: $\cos(z^2)$ c: $z^2 \sin(z)$ d: $[\sin(z)]^2$.

Chapter 8

jk#**Laurent series**^P. Compute the power-series $\sum_{n=0}^{\infty} B_n z^n$ for $F(z) := \frac{1}{z-3}$, on ball $\mathcal{B} := \text{Bal}_3(0)$.

For $F()$, compute Laurent series $\sum_{n \in \mathbb{Z}} A_n z^n$ on annulus $\mathcal{A} := \text{Ann}_\infty^3(0)$.

Chapter 9

FC#**9.21c**^P 141. On $\mathbf{A} := \{1 \leq |z| \leq 2\}$, a closed annulus, how many zeros does $f(z) := z^4 - 5z + 1$ have?

Misc**Ahl#3^P120.** With $\mathbf{C} := \text{Sph}_3(0)$, compute

$$J_{\mathbf{p}} := \int_{\mathbf{C}} \frac{|\mathrm{d}z|}{|z - \mathbf{p}|^2}$$

Ahl#2^P123. For a posint N and $R > 0$, entire fnc f satisfies $|f(z)| \leq |z|^N$, for each $z \stackrel{|z|}{>} R$. Prove that $f(z)$ is a polynomial in z .

assuming that $\mathbf{p} \notin \mathbf{C}$.

Predictions. At the origin, $p = 0$, we certainly expect

$$J_0 \stackrel{\text{should}}{=} \frac{1}{3^2} \cdot 2\pi \cdot 3 = \frac{6\pi}{9}. \quad [\text{See } (*).]$$

Mapping $\mathbf{p} \mapsto J_{\mathbf{p}}$ is cts, and always positive. Finally,

$$\lim_{\mathbf{p} \rightarrow \infty} J_{\mathbf{p}} = 0 \quad \text{and} \quad \lim_{|\mathbf{p}| \rightarrow 3} J_{\mathbf{p}} = \infty. \quad \square$$

Ahl#5^P 123. Show that the successive derivatives of an analytic function at a point can never satisfy $|f^{(n)}(\mathbf{p})| > n! \cdot n^n$. Formulate a sharper theorem of the same kind.

jk#Loopy^P. Consider parametrization $\sigma: [0, 2\pi] \rightarrow \mathbb{C}$

by

$$\sigma(t) := [3 + \cos(t)] \cdot e^{i \cdot 2t}$$

Compute $J := \oint_{\sigma} \frac{\exp(z+4)}{z[z-3]} dz$.

jk1: Prove $[Tz, Tq_0, Tq_1, Tq_\infty] = [z, q_0, q_1, q_\infty]$, for each cross-ratio and each LFT T .

jk2: For distinct points $\mathbf{b}, \mathbf{c}, \mathbf{d} \in \widehat{\mathbb{C}}$, let $\widehat{\mathbf{b}, \mathbf{c}, \mathbf{d}}$ mean the gencirc they determine. Prove for each $a \in \widehat{\mathbb{C}}$:
Point a lies in the gencirc IFF crossratio $[a, \mathbf{b}, \mathbf{c}, \mathbf{d}]$ is (extended-)real.

§A Appendix: Möbius

Möbius transformation

With $\widehat{\mathbb{C}} = \mathbb{C} \sqcup \{\infty\}$ denoting the extended complex plane (holomorphically equiv. to the Riemann Sphere) we define the **Möbius group** $(\mathbb{M}, \circ, \text{Id}_{\widehat{\mathbb{C}}})$; it is the automorphism group of $\widehat{\mathbb{C}}$. This \mathbb{M} is the set functions defined by LFTs or, equivalently, by CrossRatios. (Both LFTs and CRs are defined below).

LFT. A *linear fractional transformation* is a map

$$4a: \quad f(z) := \frac{az + b}{cz + d}, \quad \text{where } a, b, c, d \in \mathbb{C} \quad \text{and } ad - bc \neq 0.$$

We will associate $\frac{az + b}{cz + d}$ with the 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, whose determinant is $\text{Det}(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = ad - bc$. If the LFT is understood, I may write **Det** to stand for the corresponding $ad - bc$ quantity.

LFT $f(z) = \frac{az + b}{cz + d}$ is a map $\widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$; from the extended plane to itself. Indeed,

$$f(\infty) := \lim_{z \rightarrow \infty} \frac{az + b}{cz + d} = \frac{a}{c}. \quad \text{And} \quad f\left(\frac{-d}{c}\right) = \infty.$$

N.B: In (4a), multiplying the four parameters by a non-zero complex does not change the defined function. E.g $\frac{5a \cdot z + 5b}{5c \cdot z + 5d}$ is the same $f(z)$ that (4a) defined. Consequently, (4a) defines a **3-C-dim' al group** [i.e, *not 4-C-dim' al*].

Normalizing. When numbers a, b, c, d are real: LFT $\frac{az + b}{cz + d}$ is **normalized** if $\text{Det} = 1$ and

*N: $\begin{cases} \text{If } c \neq 0, \text{ then } c > 0; \\ \text{if } c = 0, \text{ then } d > 0 \end{cases}$

In contrast, the LFT is “ \mathbb{Z} -normalized” if a, b, c, d are *integers* and $\text{GCD}(a, b, c, d) = 1$, and (*N) holds. So the \mathbb{Z} -normalized presentation of $\frac{65z + 20}{-10z + 15}$ is $\frac{-13z - 4}{2z - 3}$ i.e, $\frac{-13z + -4}{2z + -3}$.

And \mathbb{Z} -normalizing $\frac{z - 4}{-3/2}$ yields $\frac{-2z + 8}{3}$.

Composition of LFTs. Consider LFTs

$$g(z) := \frac{\alpha z + \beta}{\gamma z + \delta} \quad \text{and} \quad f(z) := \frac{az + b}{cz + d}.$$

One checks easily that their composition $g \circ f$ is the LFT whose matrix is the matrix-product

$$*: \quad \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \stackrel{\text{note}}{=} \begin{bmatrix} \alpha a + \beta c & \alpha b + \beta d \\ \gamma a + \delta c & \gamma b + \delta d \end{bmatrix}.$$

In general, LFT $f \circ g$ differs from $g \circ f$; unsurprising, as matrix-mult is not commutative. One checks that the product of the determinants of the matrices on LhS(*) equals $\text{Det}(\text{RhS}(*))$.

When the **Det** of $M := \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is non-zero, then

$$M^{-1} = \frac{1}{\text{Det}(M)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

(Recall that multiplying a matrix by a scalar s simply multiplies each entry by s . E.g $5 \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 5a & 5b \\ 5c & 5d \end{bmatrix}$.) So the inverse-fnc of the f of (4a) can be written as

$$4b: \quad f^{-1}(z) = \frac{dz - b}{-cz + a}.$$

Generating \mathbb{M} . Especially simple are the *Translation*, *Dilation*, and *Inversion/Reciprocation* LFTs:

$$\begin{aligned} T_\tau &:= z \mapsto z + \tau; \\ D_m &:= z \mapsto mz; \\ R &:= z \mapsto 1/z, \end{aligned}$$

where $\tau, m \in \mathbb{C}$ with $m \neq 0$. An arbitrary $f(z) := \frac{az + b}{cz + d}$ can be built from these, as follows.

CASE: $c = 0$ LFT is $\frac{a}{d}z + \frac{b}{d}$; so $f = T_{\frac{b}{d}} \circ D_{\frac{a}{d}}$.

CASE: $c \neq 0$ Normalize the LFT by $ad - bc = 1$;

so $ad - 1 \stackrel{!}{=} bc$. We claim

$$\ddagger: \quad f = T_{a/c} \circ D_{-1/c^2} \circ R \circ T_{d/c}.$$

Computing, $\text{RhS}_\ddagger(z) = \frac{a}{c} + \frac{-1}{c^2} \cdot \frac{1}{z + \frac{d}{c}}$. So $c \cdot \text{RhS}_\ddagger(a)$ is

$$a + \frac{-1}{cz + d} = \frac{acz + ad - 1}{cz + d} \stackrel{\text{by } (\ddagger)}{=} \frac{acz + bc}{cz + d},$$

which indeed equals $c \cdot \frac{az + b}{cz + d}$.

Möbius group as quotient. The set of 2×2 matrices with *non-zero determinant* has the anodyne moniker of **General Linear group**. When the entries come from \mathbb{C} , it is written $\text{GL}_{2 \times 2}(\mathbb{C})$.

Since multiplying a 2×2 matrix by a non-zero constant does not change the LFT that the matrix determines, our Möbius group is the quotient

$$\text{GL}_{2 \times 2}(\mathbb{C}) \Big/ \cancel{\text{x nzc}} ;$$

the set of equivalence classes.

Cross ratio. [...] is an alternative way of defining the Möbius group.

$$5: [z, q_0, q_1, q_\infty] := \frac{[z - q_0][q_1 - q_\infty]}{[z - q_\infty][q_1 - q_0]}, \text{ with } q_0, q_1, q_\infty \text{ distinct in } \widehat{\mathbb{C}}.$$

When one of q_0, q_1, q_∞ is ∞ , we then interpret the CR as a limit:

$$\begin{aligned} [z, \infty, q_1, q_\infty] &:= \lim_{v \rightarrow \infty} [z, v, q_1, q_\infty] = \frac{0z + [q_1 - q_\infty]}{z - q_\infty}; \\ \dagger: [z, q_0, \infty, q_\infty] &:= \lim_{v \rightarrow \infty} [z, q_0, v, q_\infty] = \frac{z - q_0}{z - q_\infty}; \\ [z, q_0, q_1, \infty] &:= \lim_{v \rightarrow \infty} [z, q_0, q_1, v] = \frac{z - q_0}{0z + [q_1 - q_0]}. \end{aligned}$$

With $f(z) := [z, q_0, q_1, q_\infty]$, note that

$$f(q_0) = 0, \quad f(q_1) = 1, \quad f(q_\infty) = \infty.$$

Etymology. In German, a cross-ratio was called a *Doppelverhältnis* [double ratio] because ...

$$(5)': [z, q_0, q_1, q_\infty] \stackrel{\text{note}}{=} \frac{z - q_0}{q_1 - q_0} \Big/ \frac{z - q_\infty}{q_1 - q_\infty},$$

... it is a *ratio of ratios*. □

Crossratio \leftrightarrow LFT. As fncs of $z \in \widehat{\mathbb{C}}$, suppose we have equality

$$*: \quad \frac{az + b}{cz + d} = [z, q_0, q_1, q_\infty].$$

Computing a, b, c, d from the CR. When one of q_0, q_1, q_∞ is ∞ , our (†) gives

$$\begin{aligned} a &= 0, & b &= q_1 - q_\infty; \\ c &= 1, & d &= -q_\infty; \\ a &= 1, & b &= -q_0; \\ c &= 1, & d &= -q_\infty; \\ a &= 1, & b &= -q_0; \\ c &= 0, & d &= q_1 - q_0. \end{aligned}$$

Otherwise, when *none* of q_0, q_1, q_∞ is ∞ , use this:

$$\dagger: \quad \begin{aligned} a &= q_1 - q_\infty & \text{and} & \quad b = [q_\infty - q_1] \cdot q_0, \\ c &= q_1 - q_0 & \text{and} & \quad d = [q_0 - q_1] \cdot q_\infty. \end{aligned}$$

Computing q_0, q_1, q_∞ from the LFT. Voila:

$$\begin{aligned} q_0 &= -b/a; \\ \dagger\dagger: \quad q_1 &= [d - b]/[a - c]; \\ q_\infty &= -d/c. \end{aligned}$$

As usual, if a denominator is zero, interpret the formulas by taking a limit. E.g, if $a = 0$ then $b \neq 0$ since $\text{Det} \neq 0$. Thus $q_0 = \frac{-b}{0} = \infty$. As expected, the point that $f(z) \stackrel{\text{note}}{=} \frac{b}{cz+d}$ maps to 0 is indeed $z = \infty$.

Inverse-fnc of crossratio. Distinct points $r_0, r_1, r_\infty \in \mathbb{C}$ engender $w = f(z) := [z, r_0, r_1, r_\infty]$. We seek points $q_0, q_1, q_\infty \in \widehat{\mathbb{C}}$ so that

$$z = f^{-1}(w) := [w, q_0, q_1, q_\infty].$$

A matrix for f is $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ from (†). Hence, a matrix for f^{-1} is $\begin{bmatrix} A & B \\ C & D \end{bmatrix} := \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. So (††) and (†) give

$$\begin{aligned} q_0 &= \frac{-B}{A} = \frac{b}{d} \stackrel{\text{note}}{=} \frac{[r_1 - r_\infty] \cdot r_0}{[r_1 - r_0] \cdot r_\infty} \stackrel{\text{note}}{=} q_\infty \cdot \frac{r_0}{r_\infty}; \\ q_1 &= \frac{D - B}{A - C} \\ \dagger\dagger: \quad &= \frac{a + b}{d + c} = \frac{[r_1 - r_\infty][1 - r_0]}{[r_1 - r_0][1 - r_\infty]} \stackrel{\text{note}}{=} q_\infty \cdot \frac{1 - r_0}{1 - r_\infty}; \\ q_\infty &= \frac{-D}{C} \stackrel{\text{note}}{=} \frac{a}{c} = \frac{r_1 - r_\infty}{r_1 - r_0}. \end{aligned}$$