

Carefully TYPE a triple-spaced, grammatical, essay solving the problem. This final-project is due by **3PM, Friday, 10 Dec2010**, slid completely under my office door, LIT402.

Fill-in every blank on this sheet.

Please follow the CHECKLIST on our Teaching page.

C1: For $N=1, 2, \dots$, define fncs $R_N, F_N: \mathbb{R} \rightarrow \mathbb{R}$ by

$$R_N(x) := \exp\left(\frac{N}{1+Nx^2}\right) \quad \text{and} \quad F_N := 1/R_N.$$

a Prove that, pointwise, $F_1 \geq F_2 \geq F_3 \geq \dots \geq 0$. Use this to prove, $\forall x \in \mathbb{R}$, that $L(x) := \lim_{n \rightarrow \infty} F_n(x)$ exists in \mathbb{R} . Computing, $L(0) =$

b Let $U := \mathbb{R} \setminus \{0\}$. Define $M: U \rightarrow \mathbb{R}$ by $M := L|_U$. So $M(x) =$; a “Calc-1 fnc”. \heartsuit Differentiating, $M'(x) = M(x) \cdot [$ $]$.

Using colors, graph L and F_1, \dots, F_5 . Indicate horiz. asymptotes, points-of-inflexion (exactly?) and other relevant info.

c Let $\|\cdot\|$ denote the supremum-norm on functions. Examine/estimate $\|F_n - L\|$. Prove or disprove that

$$F_n \xrightarrow[n \rightarrow \infty]{\text{uniformly}} L, \text{ i.e., that } \lim_{n \rightarrow \infty} \|F_n - L\| \stackrel{?}{=} 0.$$

[For a CEX, give a *specific* $\varepsilon > 0$, infinite set B of indices, and *specific* points $x_n \in \mathbb{R}$ st. $\forall n \in B: [F_n - L](x_n) \geq \varepsilon$.]

d In any case, prove that $L()$ is continuous at zero. Please prove the fol proposition, which may help with the above and below tasks. (Is L'Hôpital's Thm useful?)

1: Prop'n. For each polynomial $P()$, necessarily $\lim_{x \rightarrow 0} [P(\frac{1}{x}) \cdot M(x)]$ equals zero. \diamond

With this tool in hand, prove that L is differentiable at zero by directly applying the definition (difference-quotient) of derivative.

e Now prove that L is ∞ differentiable by establishing the following nifty lemma.

\heartsuit Note that $L()$ and $M()$ are *different* functions; after all, they have different domains.

2: Nifty Poly Lemma. Given a polynomial P , define

$$3: \quad J_P(x) := \begin{cases} 0, & \text{if } x = 0 \\ P(\frac{1}{x}) \cdot M(x), & \text{if } x \neq 0 \end{cases}.$$

Prove that J_P is diff'able at the origin (use the defn of deriv), as well as everywhere else. Give a formula (in terms of P) for a new poly $\widehat{P}(w) =$

satisfying that $[J_P]' = J_{\widehat{P}}$. (The foregoing Proposition may help in proving equality at zero.) \diamond

Let Q_0 be the constant-1 poly. Inductively define $Q_{k+1} := \widehat{Q}_k$, for each $k \in \mathbb{N}$. Prove L is ∞ diff'able by proving $L^{(k)} = J_{Q_k}$, for each $k = 0, 1, 2, \dots$. E.g.,

$$Q_5(w) = \text{.....}.$$

Exhibit a table showing the coeffs of poly $Q_k(w)$, for $k = 1, \dots, 6$, at least, with powers-of- w aligned. Observed patterns/recurring-properties? *Proofs?*

f Compute the Maclaurin series for $L()$. It has form $\sum_{k=0}^{\infty} C_k \cdot [x - 0]^k$ where $C_k =$ Its RoC = What surprising relation do you note between $L()$ and its Maclaurin series?

Poorly stapled, missing ordinal, name or honor signature: 255pts
..... -15pts

Not double-spaced: -15pts

Poorly proofread: -25pts

Total: 255pts

Print name Ord:

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: