

Exam date **27Oct1997**.

Abbreviations. TS, MS, topological/metric space. seq-cpt, sequentially-compact. For a TS Y , we use \overline{A} for the closure of A , and $A^c = Y \setminus A$ for the complement of A .

A TS is **regular** if singletons are closed and: For each closed set C and point $p \notin C$, there exist disjoint open sets P and U such that $P \ni p$ and $U \supset C$.

A TS is **normal** if singletons are closed and: For each pair of disjoint closed sets C_1, C_2 , there exist disjoint open sets U_j st. $U_j \supset C_j$.

C1: Here Y is a topological space.

Y is **Hausdorff** if...

Y is **compact** if...

For $(b_n)_{n=1}^{\infty}$ a sequence, $b_n \rightarrow c$ means that...

Our Y is **sequentially-compact** if...

Fix a MS (M, d) . A subset $R \subset M$ is ε -**separated** if...

A subset $N \subset M$ is ε -**spanning** if... The MS M is **totally-bounded** if...

C2: Give examples, with proof, of the following:

a A T_1 -space X which is not Hausdorff.

b A Hausdorff space Y which is not regular.

c A topology \mathcal{T} on \mathbb{R} –not the discrete topology– so that: The \mathcal{T} -convergent sequences are precisely the eventually-constant sequences.

C3: Give an example (with proof) of a product, Λ , of seq-cpt spaces, which is not seq-cpt.

C4: Consider a MS (X, d) and an open cover \mathcal{C} of X .

i Define what it means for a particular positive real δ to be a **Lebesgue number** of \mathcal{C} .

ii Suppose now that X is sequentially-compact. Prove that \mathcal{C} has a Lebesgue number.

C5: Suppose that (Z, \mathcal{T}) is a compact Hausdorff space. Prove that Z is normal.

C6: Putting the usual metric on $[0, 1/n]$, let

$$\Omega := \prod_{n=1}^{\infty} [0, \frac{1}{n}]$$

—but equipped with the Box topology, \mathcal{B} .

a Prove or disprove: (Ω, \mathcal{B}) is sequentially-compact.

b Prove that (Ω, \mathcal{B}) is *not* LCG (locally countably generated), hence not metrizable.

Bonus: Produce, with proof, an open cover \mathcal{C} of \mathbb{R} (usual topology), which has no Lebesgue number.

End of Class-C