

Staple!

Sets and Logic
MHF3202 17HE

Class-C

Prof. JLF King
Wednesday, 16Nov2022**C1:** Short answer. Show no work. Write LARGE.Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.

a The IOP (Individual Optional Project), if you choose to do it, is due by 2PM on Friday, 09Dec2022, slid *completely* under my office door, Little Hall 402 (northeast corner of top floor) Circle: Yes Cool! Thanks

b For a finite list \mathcal{S} of posints, define

$$\mu_{\mathcal{S}}(N) := \left\{ k \in [1..N] \mid \exists d \in \mathcal{S} \text{ with } d \bullet k \right\}.$$

For $\mathcal{S} := \{6, 7, 10\}$, the Inclusion-Exclusion formula (using the floor fnc) for the number of elements, $|\mu_{\mathcal{S}}(N)|$, is

(Write your answer, using the floor function as appropriate, in form [term + term + term] - [term + term + term] + term.
The terms are computed from the $\{6, 7, 10\}$ numbers.)

When $N := 67$, then, $|\mu_{\{6, 7, 10\}}(67)| =$

c Between sets $\mathbf{X} := \mathbb{Z}_+$ and $\Omega := \mathbb{N}$, consider injections $g: \mathbf{X} \hookrightarrow \Omega$ and $h: \Omega \hookrightarrow \mathbf{X}$, defined by

$$g(x) := 3x \quad \text{and} \quad h(y) := y + 5.$$

Schröder-Bernstein produces a set $B \subset h(\Omega) \subset \mathbf{X}$ st., letting $F := \mathbf{X} \setminus B$, the fnc $\theta: \mathbf{X} \hookrightarrow \Omega$ is a *bijection*, where

$$*: \quad \theta|_F := g|_F \quad \text{and} \quad \theta|_B := h^{-1}|_B.$$

For this (g, h) , the (F, B) pair is unique. Computing,

$$\theta(56) = \text{_____} \quad \theta(137) = \text{_____} \quad \theta^{-1}(603) = \text{_____}$$

d A “Cantor’s-Hotel” type bijection $f: (5, 6] \leftrightarrow (0, 1)$ is:
 $f(\text{_____}) := \text{_____}$, for each posint n ;

and $f(x) := \text{_____}$, for each $x \in (5, 6] \setminus C$,
where $C := \text{_____}$.

e Let δ_N be the number of derangements of $[1..N]$.
Written in Incl-Excl notation (the formula we derived in class),

$$\delta_{17} = \text{_____}$$

Ord: _____

Using binom-coeffs and derangements, the number of N -perms with precisely

3 fixed-points is: _____

[You may use binom-coeffs and $\delta_1, \delta_2, \dots$ in your answer.]

OYOP: *In grammatical English sentences, write your essay on every 2nd line (usually), so I can easily write between the lines.*

C2: [Here, **WO** means “Well-ordered”.] Consider these sets:

$$\begin{aligned} B &:= \left\{ -5 + \frac{n}{n+1} \mid n \in \mathbb{N} \right\}; \\ C &:= \left\{ 7 - \frac{1}{n} \mid n \in \mathbb{Z}_+ \right\}; \\ D &:= \left\{ n \cdot \sqrt{2} \mid n \in \mathbb{N} \right\}; \\ \mathbb{Q}_{\geq 0} &:= \left\{ \frac{p}{q} \mid p, q \in \mathbb{N} \text{ with } q \neq 0 \right\}. \end{aligned}$$

For each set below, circle one of “**WO**” “**Nope**”. In the case of **Nope**, provide an explicit infinite decreasing sequence in the given set. [As always, your essay is written in sentences.]

B is	WO	Nope
$C \cup D$ is	WO	Nope
$\mathbb{Q}_{\geq 0}$ is	WO	Nope
$\mathbb{Z} \setminus (-\infty .. -17)$ is	WO	Nope

C1: _____ 150pts

C2: _____ 45pts

Total: _____ 195pts

NAME: _____

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature: _____