

Folks: For short-answer: Write **DNE** if the object does not exist or the operation cannot be performed.
NB: **DNE** $\neq \{\} \neq 0$.

C1: Short answer. Show no work.

 z *Math Festival* this **Sunday, 16Apr, 10AM-1PM**, in the *Rion Ballroom* of Reitz Union, open to all.

Circle: **True!** **Yes!** **What's "Math"?**

 a In ball $\text{Bal}_1(0)$, there are _____ solutions to

$$2z^9 - z^6 - 7z^3 + z = 2. \quad [\text{Hint: Rouché's thm.}]$$

C1: _____ 165pts

C2: _____ 45pts

 b For posreal N , compute

$$J_N := \int_0^\infty \frac{\sqrt{x}}{x^2 + N} dx = .$$

[Suggestion: **Bump contour**. (Keyhole also works, but is longer.)]

Total: _____ 210pts

 c Let $h(z) := \frac{\exp(5z)}{\sin(3z)}$. So $\text{Res}(h, \pi) = .$

 d Gamma fnc: $\Gamma(7) = .$ and $\Gamma(\frac{7}{2}) = .$

For all real $x > 1$, our $\Gamma()$ function satisfies recurrence relation $\Gamma(x) = .$

 e On annulus $\{2 < |z| < \infty\}$, fnc $f(z) := 1/[z - 2i]$ has

Laurent series $\sum_{n=-\infty}^{\infty} B_n z^n$, where $B_{-4} = .$

$B_{-3} = .$ and $B_2 = .$

C2: "On subset $U \subset \mathbb{C}$, functions $f_n: U \rightarrow \mathbb{C}$ converge uniformly to $g: U \rightarrow \mathbb{C}$ " means [the formal, ε defn]:

.....
.....
.....
.....

NAME: _____

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor."

Signature: _____