

C1: Short answer. Show no work. Write LARGE.Write DNE if the object does not exist or the operation cannot be performed. NB: DNE $\neq \{\} \neq 0$.

20 a EoS 2024 *Games Party*, from 12:50pm–4:30pm, will take place at Pascal's Cafe on Wedn, 24Apr.

 Circle Yes! True! I'll-bring-a-game!

10 b Relation **R** is a binrel on set \mathbb{Z}_+ , defined by xRy IFF $x^2 = 5y$.

Assertion “Relation **R** is reflexive” is T FAssertion “Relation **R** is antireflexive” is T F**Soln:** As $\neg[1R1]$, since $1^2 \neq 5 \cdot 1$, our **R** is *not* refl.Note $5R5$, since $5^2 = 5 \cdot 5$, hence **R** is *not* anti-refl.

25 [c] Note that $\text{GCD}(55, 33, 15) = 1$. Find particular integers S, T, U so that $55S + 33T + 15U = 1$:

$$S = 4, T = -8, U = 3$$

[Hint: $\text{GCD}(\text{GCD}(55, 33), 15) = 1$.]

Soln. Among the ∞ many correct triples are $(7, -8, -8)$, $(4, -8, 3)$, $(1, -3, 3)$, $(-2, 2, 3)$, $(-8, 12, 3)$ and $(-23, 7, 69)$. LBolting,

(lightning 55 33)

n:	r_n	q_n	s_n	t_n
0:	55	--	1	0
1:	33	1	0	1
2:	22	1	1	-1
3:	11	2	-1	2
4:	0	Infny	3	-5

Rename r3,s3,t3 to GCD,S,T.

Note $\text{GCD} = r0 * S + r1 * T$, i.e
 $11 = [55]*[-1] + [33]*[2]$.

And, we now want (lightning 11 15) but I'll reverse the order to make the table one row shorter.

(lightning 15 11)

n:	r_n	q_n	s_n	t_n
0:	15	--	1	0
1:	11	1	0	1
2:	4	2	1	-1
3:	3	1	-2	3
4:	1	3	3	-4
5:	0	Infny	-11	15

So $1 = 11 \cdot [-4] + 15 \cdot 3$. Substituting from the 1st LBolt,

$$\begin{aligned} 1 &= [55 \cdot [-1] + 33 \cdot 2] \cdot [-4] + 15 \cdot 3 \\ &= 55 \cdot 4 + 33 \cdot [-8] + 15 \cdot 3. \end{aligned} \quad \diamond$$

Exploration. Since $\text{GCD}(55, 33) = 11$, the 1-parameter family of Bézout-pairs for $(55, 33)$ is

$$\begin{aligned} 11 &= [-1 + \frac{33}{11} \cdot n] \cdot 55 + [2 - \frac{55}{11} \cdot n] \cdot 33 \\ &= \underbrace{[-1 + 3n]}_{A_n} \cdot 55 + \underbrace{[2 - 5n]}_{B_n} \cdot 33. \end{aligned}$$

Our second LBolt gives that

$$1 = [-4] \cdot 11 + 3 \cdot 15.$$

Our 1-parameter family of $(11, 15)$ -Bézout-pairs is thus

$$1 = \underbrace{[-4 + 15k]}_{X_k} \cdot 11 + \underbrace{[3 - 11k]}_{Y_k} \cdot 15.$$

Rewriting, $1 = 11X_k + 15Y_k$. Substituting,

$$\begin{aligned} 1 &= [55A_n + 33B_n] \cdot X_k + 15 \cdot Y_k \\ &= \underbrace{55A_n X_k}_{P_{n,k}} + \underbrace{33B_n X_k}_{Q_{n,k}} + \underbrace{15Y_k}_{R_{n,k}}. \end{aligned}$$

An *incomplete* 2-parameter family $\mathbf{V}_{n,k} := \begin{bmatrix} P_{n,k} \\ Q_{n,k} \\ R_{n,k} \end{bmatrix}$ of Bézout-triples for $(55, 33, 15)$ can be cheerfully written as

$$\begin{aligned} P_{n,k} &= [-1 + 3n] \cdot [-4 + 15k], \\ \dagger: \quad Q_{n,k} &= [2 - 5n] \cdot [-4 + 15k] \quad \text{and} \\ R_{n,k} &= [3 - 11k]. \end{aligned}$$

Plugging in $n = 0$ and $k = 0$ gives the above $\begin{bmatrix} 4 \\ -8 \\ 3 \end{bmatrix}$. \diamond

Going further. While correct triples $\begin{bmatrix} 7 \\ -8 \\ -8 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix}$ can be obtained from \dagger , we need *non-integer* values of n, k to get them; e.g. $\begin{bmatrix} 7 \\ -8 \\ -8 \end{bmatrix} = \mathbf{V}_{\frac{30}{55}, 1}$. *Unpleasant...*

Using another method [*Smith normal form* of a matrix], one can derive

$$\dagger: \quad \mathbf{U}_{\alpha, \beta} := \begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix} + \alpha \begin{bmatrix} -3 \\ 10 \\ -11 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ -5 \\ 11 \end{bmatrix}$$

which parametrizes all Bézout-triples, as α, β range over all the integers. E.g. $\mathbf{U}_{-2, -3} = \begin{bmatrix} 7 \\ -8 \\ -8 \end{bmatrix}$ and $\mathbf{U}_{1, 1} = \begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix}$. \diamond

[d] On a 4-set, let K be the number of partitions which use *only* atom sizes 1 and 2. [A partition need not use both sizes.] Then $K = \dots$. [Multinomial coefficients are useful.]

Counting ptns. Below, let $\#P$ mean “number of partitions with...”. Let a symbol such as $4A1$ abbreviate “4 atoms of size 1”.

Computing,

$$K = \frac{\overbrace{\binom{4}{1,1,1,1}}^{\#P\ 4A1}}{4!} + \frac{\overbrace{\binom{4}{1,1,2}}^{\#P\ 2A1\ 1A2}}{2!} + \frac{\overbrace{\binom{4}{2,2}}^{\#P\ 2A2}}{2!} = 1 + 6 + 3 = 10.$$

Alternatively,

$$\begin{aligned} K &= 15 - [\#P\ 1A1\ 1A3] - [\#P\ 1A4] \\ &= 15 - 4 - 1 = 10. \end{aligned}$$

[e] The number of permutations of “PREPPER”, as a multinomial coefficient, is $\binom{7}{3,2,2} = \binom{7}{3} \binom{4}{2} \binom{2}{2} = 35 \cdot 6 \cdot 1$ numeral 210.

Counting perms. Label pockets ‘P’, ‘R’, ‘E’. Tokens placed in the pockets are letter-positions 1,2,3,4,5,6,7. Hence $\binom{7}{3,2,2}$ is the number of permutations of “PREPPER”. ♦

Note that I did not write: “The answer is $\binom{7}{3,2,2}$.”

C2: Short answer. Show no work. Write LARGE.

10 10 An explicit bijection $F: \mathbb{N} \leftrightarrow \mathbb{Z}$ is this:

When n is even, then $F(n) := \lfloor \frac{n}{2} \rfloor$.

When n is odd, then $F(n) := \lfloor \frac{-[n+1]}{2} \rfloor$.

∃ other correct formulae. A cute formula is

$$F(\text{even } n) := [-1]^{\frac{n}{2}} \cdot \frac{n}{2} ;$$

$$F(\text{odd } n) := [-1]^{\frac{n-1}{2}} \cdot \frac{n+1}{2} . \quad \spadesuit$$

ADDENDUM: Just for fun, a Computer Run:

```
(defun NegOneTo (e) (if (oddp e) -1 +1))

(defun fe (n) (* (NegOneTo (/ n 2)) (/ n 2)))
(defun fd (n) (* (NegOneTo (/ (1- n) 2)) (/ (1+ n) 2)))

(iter (for n :below 23) (format t " ~2D" (if (oddp n) (fd n) (fe n))))
 0 1 -1 -2 2 3 -3 -4 4 5 -5 -6 6 7 -7 -8 8 9 -9 -10 10 11 -11
```

35 Let $\mathbb{S}_{\mathbb{N}}$ be the set of *permutations of \mathbb{N}* . Circle those of following sets which are equinumerous with $\mathbb{N}^{\mathbb{N}}$:

\mathbb{N} \mathbb{R} $\mathbb{N} \times \mathbb{R}$ $2^{\mathbb{R}}$ $\mathbb{R}^{\mathbb{N}}$ $\mathbb{R}^{\mathbb{R}}$ $\mathbb{S}_{\mathbb{N}}$

[Schröder-Bernstein is useful for some of these.]

Equi-card: [Below, a blue set is one of the candidate answers in the question.]

Our “Primer on Cardinalities” gives $2 \preccurlyeq \mathbb{N} \preccurlyeq \mathbb{R}$, and consequently

$$2^{\mathbb{N}} \preccurlyeq \mathbb{N}^{\mathbb{N}} \preccurlyeq \mathbb{R}^{\mathbb{N}} \asymp [2^{\mathbb{N}}]^{\mathbb{N}} \stackrel{\text{CE}}{\asymp} 2^{\mathbb{N} \times \mathbb{N}} \asymp 2^{\mathbb{N}}.$$

So S-B says $2^{\mathbb{N}} \asymp \mathbb{N}^{\mathbb{N}} \asymp \mathbb{R}^{\mathbb{N}}$. Recall, $2^{\mathbb{N}} \asymp \mathbb{R} \asymp \mathbb{N} \times \mathbb{R}$.

What about $\mathbb{S}_{\mathbb{N}}$? Examining the set-of-permutations, the identity map injects $\mathbb{S}_{\mathbb{N}} \xrightarrow{\text{Id}} \mathbb{N}^{\mathbb{N}} \asymp 2^{\mathbb{N}}$.

For a reverse injection, write $2^{\mathbb{N}}$ as $\{\text{Stay, Flip}\}^{\mathbb{N}}$. Inject $\{\text{Stay, Flip}\}^{\mathbb{N}} \hookrightarrow \mathbb{S}_{\mathbb{N}}$ by mapping $g \mapsto \hat{g}$, where:

This \hat{g} exchanges $2n$ with $2n+1$ IFF $g(n) = \text{Flip}$.

Specifically: For $n = 0, 1, 2, \dots$

If $g(n) = \text{Stay}$ then $\hat{g}(2n) := 2n$ and $\hat{g}(2n+1) := 2n+1$;

If $g(n) = \text{Flip}$ then $\hat{g}(2n) := 2n+1$ and $\hat{g}(2n+1) := 2n$.

Now Schröder-Bernstein says $\mathbb{S}_{\mathbb{N}} \asymp 2^{\mathbb{N}}$.

NOT Equi: Cantor diagonalization showed $\mathbb{N} \prec 2^{\mathbb{N}}$, so \mathbb{N} is too small.

OTOH and, $2^{\mathbb{R}}$ is too big, as $2^{\mathbb{R}} \succ \mathbb{R} \asymp 2^{\mathbb{N}}$. Even “bigger”, $\mathbb{R}^{\mathbb{R}} \succcurlyeq 2^{\mathbb{R}}$. [Exer: Actually, $\mathbb{R}^{\mathbb{R}} \asymp 2^{\mathbb{R}}$.]

h 15 15 Each three sets Ω, B, C engender a natural bijection, $\Theta: \Omega^{B \times C} \leftrightarrow [\Omega^B]^C$, defined, for each $f \in \Omega^{B \times C}$, by

$$\Theta(f) := \left[c \mapsto \left[b \mapsto f(b, c) \right] \right].$$

Its inverse-map $\Upsilon: [\Omega^B]^C \leftrightarrow \Omega^{B \times C}$ has, for $g \in [\Omega^B]^C$,

$$\Upsilon(g) := \left[(b, c) \mapsto \left[[g(c)](b) \right] \right].$$

Curious See *Currying a function*:

<https://en.wikipedia.org/wiki/Currying>

and

https://en.wikipedia.org/wiki/Currying#Set_theory

30 [i] A “Cantor’s-Hotel” type bijection $f: (5, 6] \leftrightarrow (0, 1)$ is:

$$f\left(\underbrace{\frac{1}{n}}_{\text{.....}} + 5\right) := \underbrace{\frac{1}{n+1}}_{\text{.....}}, \text{ for each point } n;$$

$$\text{and } f(x) := \underbrace{x - 5}_{\text{.....}}, \text{ for each } x \in (5, 6] \setminus C,$$

$$\text{where } C := \left\{ \underbrace{\frac{1}{n} + 5}_{\text{.....}} \mid n \in \mathbb{Z}_+ \right\}.$$

C1: _____ 100pts

C2: _____ 115pts

Total: _____ 215pts

NAME: _____
 Energetic *Proof-is-my-Middle-Name* Student

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: *Energetic Student* _____