

Staple!

Sets and Logic
MHF3202 7860

Practice-P

Prof. JLF King
Whenever...

Ord: _____

P1: Short answer. Show no work. Write LARGE.Write DNE if the object does not exist or the operation cannot be performed. NB: $\text{DNE} \neq \{\} \neq 0$.**a** Which action *loses pts?* circle*Writing-in-sentences**Writing-t-different-from-+**Tiny - tiny - writing**Writing-LARGE***b** On $\Omega := [1..19] \times [1..19]$, define binary-relation **S** by: $(x, \alpha) \mathbf{S} (y, \beta) \text{ IFF } x \cdot \beta \equiv_{20} y \cdot \alpha$. Statement"Relation **S** is an **equivalence relation**" is: T FThe answer is FALSE. Produce three specific pairs p, q, r such that $p \mathbf{S} q$ and $q \mathbf{S} r$, yet $p \mathbf{S} r$.**c** Note that $\text{GCD}(15, 21, 35) = 1$. Find particular integers S, T, U so that $15S + 21T + 35U = 1$:

$$S = \dots, T = \dots, U = \dots$$

[Hint: $\text{GCD}(\text{GCD}(15, 21), 35) = 1$.]**d** On a 5-set, let K be the number of partitions which use *only* atom sizes 1 and 2. [A partition need not use both sizes.] Then $K = \dots$. [Multinomial coefficients are useful.]**e** Let N be the number of permutations of the letters in **ABRACADABRA**. Asa multinomial-coeff, $N = \binom{\dots}{p_1, p_2, \dots}$. [Write the bottom integers in **increasing** order, $p_1 \leq p_2 \leq \dots$. The bottom integers should sum to the top integer.] Written as product-of-binomials, $N = \dots$.Evaluate each binomial as an integer, and write N as a product of these integers: $N = \dots$.For a finite list \mathcal{S} of posints, define

$$\mu_{\mathcal{S}}(N) := \left\{ k \in [1..N] \mid \exists d \in \mathcal{S} \text{ with } d \bullet k \right\}.$$

For $\mathcal{S} := \{6, 7, 10\}$, the **Inclusion-Exclusion** formula (using the floor fnc) for the number of elements, $|\mu_{\mathcal{S}}(N)|$, is(Write your answer, using the floor function as appropriate, in form $[\text{term} + \text{term} + \text{term}] - [\text{term} + \text{term} + \text{term}] + \text{term}$.)The terms are computed from the $\{6, 7, 10\}$ numbers.)When $N := 67$, then, $|\mu_{\{6,7,10\}}(67)| = \dots$ Between sets $\mathbf{X} := \mathbb{Z}_+$ and $\Omega := \mathbb{N}$, consider injections $g: \mathbf{X} \hookrightarrow \Omega$ and $h: \Omega \hookrightarrow \mathbf{X}$, defined by

$$g(x) := 3x \text{ and } h(y) := y + 5.$$

Schröder-Bernstein produces a set $B \subset h(\Omega) \subset \mathbf{X}$ st., letting $F := \mathbf{X} \setminus B$, the fnc $\theta: \mathbf{X} \hookrightarrow \Omega$ is a **bijection**, where

$$* : \theta|_F := g|_F \text{ and } \theta|_B := h^{-1}|_B.$$

For **this** (g, h) , the (F, B) pair is unique. Computing, $\theta(56) = \dots$, $\theta(137) = \dots$, $\theta^{-1}(603) = \dots$.Let $T(m) := \frac{1}{2}m[m+1]$ be the m^{th} triangular number. An explicit bijection $F: \mathbb{N} \times \mathbb{N} \hookrightarrow [-4.. \infty)$ is

$$F(n, k) := \dots$$

Continued...

OYOP: In grammatical English **sentences**, write each essay on every 2nd line (usually), so that I can easily write between the lines.

P2: Carefully STATE the Cardinality Exponentiation Lemma [CE-Lemma].

Prove the CE-Lemma.

P3: Let \mathcal{P}_∞ denote the collection of all infinite subsets of \mathbb{N} . Define a relation $\dot{\equiv}$ on \mathcal{P}_∞ by: $A \dot{\equiv} B$ IFF $A \cap B$ is infinite.

Either prove that $\dot{\equiv}$ is transitive, or else produce three explicit sets $A, B, C \in \mathcal{P}_\infty$ showing that $\dot{\equiv}$ is not transitive.

P1: _____ 000pts

P2: _____ 000pts

P3: _____ 000pts

Total: _____ 0pts

NAME:
.....

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: