

Burnside's lemma applied to necklaces

J.L.F. King

14 November, 2022 (at 18:24)

Group action. The symbol $G \circ \Omega$ means that gp G *acts on* set Ω ; here, that $G \subset \mathbb{S}_\Omega$. For $h \in G$ and $\omega \in \Omega$, write the gp-action as $h(\omega)$ or just $h\omega$.

Recall: The *orbit* and *stabilizer* of a point ω , and the *fixed-pt set* of a group-element h , are:

$$\begin{aligned}\mathcal{O}(\omega) &= \mathcal{O}_G(\omega) := \{h(\omega) \mid h \in G\} && \subset \Omega; \\ \text{Stab}(\omega) &= \text{Stab}_G(\omega) := \{h \in G \mid h(\omega) = \omega\} && \subset G; \\ \text{Fix}(h) &= \text{Fix}_G(h) := \{\omega \in \Omega \mid h(\omega) = \omega\} && \subset \Omega.\end{aligned}$$

Counting necklaces

We'll use the following algebraic tool.

1: **Burnside's Lemma.** *The number of G -orbits is*

$$\ddagger: \quad \#\text{Orbits} = \frac{1}{|G|} \cdot \sum_{g \in G} |\text{Fix}(g)|. \quad \diamond$$

Henceforth, an N -**necklace** is an oriented circular ring of N colored stones. Two necklaces are the same if one can be rotated [but *not* turned-over] to get the other necklace. Hence rotation group $G := (\mathbb{Z}_N, +, 0)$ acts on the space, Ω , of necklaces. Use symbol R (for Rotation) for a generator of G .

2: **Necklace-6.** With two colors of stone, how many 6-stone necklaces are there? ♦

Soln. A necklace *might* be periodic with period d , where d is a divisor of 6. E.g,

necklace is invariant under rotation by $d=3$ stone-positions. The number of necklaces invariant under rotation by d is 2^d , since each of the d positions has a choice of 2 colors.

In \mathbb{Z}_6 , the *multiples* of d form a subgp isomorphic to \mathbb{Z}_ℓ , where $d \cdot \ell = 6$; this cyclic subgp has $\varphi(\ell)$ many generators.

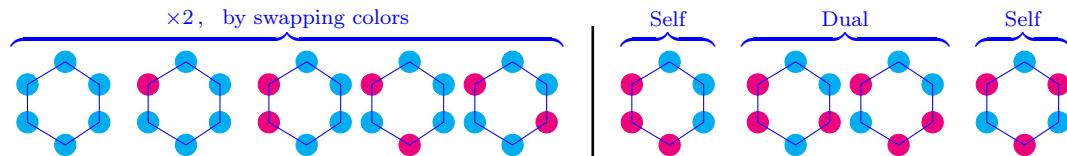
Burnside's Lemma can be applied systematically, using the table below:

Period d	$\ell := \frac{6}{d}$	$\varphi(\ell)$	#Necklaces fixed by \mathbb{R}^d
6	1	1	2^6
3	2	1	2^3
2	3	2	2^2
1	6	2	2^1

Burnside's says that #Necklaces equals

$$\frac{1}{|G|} \cdot \sum_{g \in G} |\text{Fix}(g)| = \frac{1}{6} [1 \cdot 2^6 + 1 \cdot 2^3 + 2 \cdot 2^2 + 2 \cdot 2^1] = 14.$$

Here are all the 6-stone **Aqua-Red** necklaces:



Conveniently, $[5 \times 2] + 4$ indeed equals 14. ♦

General necklaces. Allowing K colors gives $\frac{1}{6} [K^6 + K^3 + 2 \cdot K^2 + 2 \cdot K]$ many 6-stone necklaces. Three colors makes 130 necklaces; four colors, 700. [*Exer:* Show that polynomial $K^6 + K^3 + 2K^2 + 2K$ is always divisible by 6, for each natnum K .]

Extending, the # of N -stone necklaces with K colors allowed, $\mathcal{L}_{N,K}$, is

$$3: \quad \mathcal{L}_{N,K} = \frac{1}{N} \sum_{d \cdot \ell = N} [\varphi(\ell) \cdot K^d],$$

with the sum taken over all *ordered pairs* (d, ℓ) of posints satisfying $d \cdot \ell = N$.

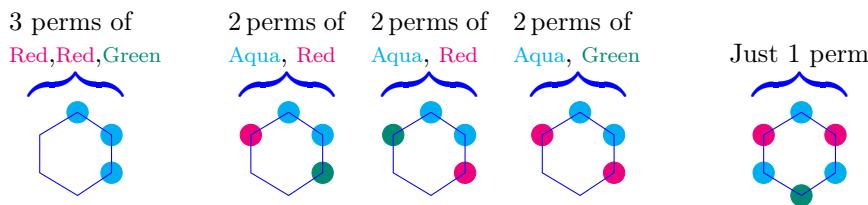
4: Specified color-counts. How many 6-stone necklaces have: *Three aqua pearls, two red pearls, and a single green pearl?* ◆

Pf. Let's make a table-of-values for $(3, 2, 1)$ -necklaces:

Period d	$\ell := \frac{6}{d}$	$\varphi(\ell)$	#Necklaces fixed by \mathbb{R}^d
$\lceil 1^6 \rceil, 6$	1	1	$\binom{6}{3, 2, 1}$
$\lceil 2^3 \rceil, 3$	2	1	0
$\lceil 3^2 \rceil, 2$	3	2	0
$\lceil 6^1 \rceil, 1$	6	2	0

The *Green*-stone must appear *exactly once*. Thus $\ell = \frac{6}{d}$ must be 1, so only the top row of the above table can have any fixed-pts.

Note $\binom{6}{3, 2, 1} = \binom{6}{3} \binom{3}{2} \binom{1}{1} = [5 \cdot 4] \cdot 3$. Hence the number of $(3, 2, 1)$ -necklaces is $\frac{1}{6} [5 \cdot 4 \cdot 3] \stackrel{\text{note}}{=} 10$. And here they are:



Happily, $3 + 2 + 2 + 2 + 1$ equals 10. ◆

5: Counting 9-bracelets. How many 9-stone bracelets have 4 aqua stones, 3 red stones, 2 green stones? [A bracelet allows the ring-of-stones to be turned-over.] \diamond

Pf. The acting gp is $G := \mathbb{D}_9 = \langle R, F \rangle$. The following table counts #Fixed-pts:

Cyc-signature & example	The number of such elts	#Bracelets fixed by R^d
$\lceil 1^9 \rceil, R^9$	$\varphi(\frac{9}{9}) = 1$	$\binom{9}{4,3,2}$
$\lceil 3^3 \rceil, R^3$	$\varphi(\frac{9}{3}) = 2$	0
$\lceil 9^1 \rceil, R^1$	$\varphi(\frac{9}{1}) = 6$	0
$\lceil 2^9 \rceil, F$	9	$\binom{4}{2,1,1}$

[Checking: $1 + 2 + 6 + 9$ equals $|\mathbb{D}_9|$.] The #stones-spectrum is $(4, 3, 2)$ but some values are not divisible by 3; so 0 bracelets are fixed under the $\lceil 3^3 \rceil$ signature. Similarly, not all of $(4, 3, 2)$ is divisible by 9.

The only color with an odd-# of stones is red. So a flip can only fix a bracelet if the flip-axis passes through a red, leaving two 4-stone halves: *Each half with $\frac{4}{2}$ aqua stones, $\frac{2}{2}$ red stones, $\frac{2}{2}$ green stones*. So the # of flip-fixed bracelets is $\binom{4}{2,1,1} = 6 \cdot 2$.

Computing, $\binom{9}{4,3,2} = \binom{9}{4} \binom{5}{3} = 9 \cdot 7 \cdot 2 \cdot 10$. Consequently,

$$\begin{aligned} \#\text{Bracelets} &= \frac{1}{|\mathbb{D}_9|} \left[1 \cdot \binom{9}{4,3,2} + 9 \cdot \binom{4}{2,1,1} \right] \\ &= \frac{1}{2 \cdot 9} \left[9 \cdot 7 \cdot 2 \cdot 10 + 9 \cdot 6 \cdot 2 \right] \\ &= 7 \cdot 10 + 6 = 76. \end{aligned} \quad \diamond$$

The 76 bracelets:

