

Staple!

Sets and Logic
MHF3202 7860

Home-B

Prof. JLF King
Wednesday, 06Mar2024

Due **BoC, Wedn, 20Mar2024**, wATMP! Print this problem-sheet; it is the first page of your write-up, with the blanks filled in (handwritten). Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE $\neq \{\} \neq 0$** . [Put ordinal, Team-# and sign HONOR CODE.]

B1: Show no work.

a A K -set Ω has **non-symmetric** binrels. Its number of **anti-symmetric** binrels is

[Note: Do not confuse **symmetric** with **reflexive**. Be *careful* on this problem.]

b Sum $\binom{45}{19} + 2\binom{45}{20} + \binom{45}{21} = \binom{T}{B}$, where $T =$ and $B =$. Using the same idea,

$$\binom{32}{13} + 3\binom{32}{14} + 3\binom{32}{15} + \binom{32}{16} = \binom{\tau}{\beta},$$

where $\tau =$ and $\beta =$.

c On $\Omega := [1..29] \times [1..29]$, define binary-relation **C** by: $(x, \alpha) \mathbf{C} (y, \beta) \text{ IFF } x \cdot \beta \equiv_{30} y \cdot \alpha$. Statement “Relation **C** is an equivalence relation” is: $T \quad F$

d Suppose that \prec is a total-order on set \mathcal{S} , and \lessdot is total-order on set Ω , both strict. Define binrel \ll on $\mathcal{S} \times \Omega$ by:

$$(b, \beta) \ll (c, \gamma)$$

IFF Either $b \prec c$ or $[b = c \text{ and } \beta \lessdot \gamma]$.

Then:

Relation \ll is a total-order.Suppose \prec and \lessdot are each well-orders.Then \ll is a well-order. $T \quad F$ $T \quad F$

Carefully TYPE your two essays, double-spaced. I suggest L^AT_EX.

B2: Recall **Rabbits and Lights** from the zoomester's beginning: To your right are lights $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \dots$ Each light has a toggle button; Press&release: the light illuminates; P&R again, it is extinguished.

Off to your left is a queue of rabbits; so we have

$$\dots \mathcal{R}_3 \mathcal{R}_2 \mathcal{R}_1 \mathcal{L}_1 \mathcal{L}_2 \mathcal{L}_3 \mathcal{L}_4, \dots$$

All the lights are initially off. If rabbit- α (i.e., \mathcal{R}_α) jumps, then he will hop on lights $\mathcal{L}_\alpha, \mathcal{L}_{2\alpha}, \mathcal{L}_{3\alpha}, \dots$, turning them all on. If rabbit- β now jumps, he will change the state of lights $\beta, 2\beta, 3\beta, \dots$, turning some on, and some off.

A Map f . A (finite or infinite) set $R = \{\alpha_1, \alpha_2, \dots\}$ of rabbit-indices is an element of powerset $\mathbf{P} := \mathcal{P}(\mathbb{Z}_+)$. After those rabbits jump, we have a (finite or infinite) set $L = \{\beta_1, \beta_2, \beta_3, \dots\}$ of indices of illuminated lights. Define $f: \mathbf{P} \rightarrow \mathbf{P}$ by $f(R) := L$.

Our first-day class showed [involution argument, and re-argued using the divisor-count τ -func] that $f(\mathbb{Z}_+)$ is the set $\{1, 4, 9, \dots\}$ of squares. Evidently $f(\emptyset) = \emptyset$ and $f(\{1, 2\}) = \text{Odds}$. \square

Q1 For each of the following questions, produce either a **CEX** [counterexample] or a **formal proof**.

Is f injective? Is f surjective?

Q2 For $L \in \text{Range}(f)$, give an algorithm to produce an R for which $f(R) = L$. If you program, can you implement your algorithm in computer code?

Q3 Produce a (*non-trivial*) commutative, associative binop $\$: \mathbf{P} \times \mathbf{P} \rightarrow \mathbf{P}$ which satisfies

$$\forall R, R': \quad f(R \$ R') = f(R) \$ f(R').$$

What can you tell me about this binary operator?

Q4 What are all the f -fixed-points; those rabbit-lists R with $f(R) = R$?

What can you say about the dynamics of f ? —does it have periodic points of order 2? 3? ...?What is $f(f(\mathbb{Z}_+)) \stackrel{\text{note}}{=} f(\text{Squares})$? (Conjecture? Computer simulation?)

B3: The *Threeish-numbers* comprise $\mathcal{T} := 1 + 3\mathbb{N}$. In terms of PoP-factorization $T = p_1^{E_1} \cdots p_K^{E_K}$ [where $p_1 < \dots < p_K$ are \mathbb{Z} -primes, and each E_j is a posint]:

- [i] Give/prove an IFF-characterization for when $T \in \mathcal{T}$.
- [ii] Give/prove an IFF-char. of when T is Threeish-irreducible.
- [iii] Give/prove an IFF-char. of when T is Threeish-prime.
- [iv] Using theorem(s) from THE WEB, prove or disprove:
“There are ∞ many Threeish-primes.”

B1: _____ 135pts

B2: _____ 100pts

B3: _____ 85pts

Total: _____ 320pts

HONOR CODE: “I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).” *Name/Signature/Ord*

Ord:

.....

Ord:

.....

Ord:

.....