

Due **BoC, Wedn, 20Mar2024**, wATMP! Print this problem-sheet; it is the first page of your write-up, with the blanks filled in (handwritten). Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{ \} \neq 0$. [Put ordinal, Team-# and sign HONOR CODE.]

B1: Show no work.

20 **a** A K -set Ω has $2^{[K^2]} - 2^{\frac{K[K+1]}{2}}$ non-symmetric binrels. Its number of anti-symmetric binrels is $2^K \cdot 3^{\binom{K}{2}}$

[Note: Do not confuse **symmetric** with **reflexive**. Be *careful* on this problem.]

Prelim. Binrel **A** is **anti-symmetric** if $\forall \alpha, \beta \in \Omega: [\alpha \mathbf{A} \beta \& \beta \mathbf{A} \alpha] \Rightarrow \alpha = \beta$. A binrel can be simultaneously **symm** and **anti-symm**; e.g, the *empty relation*.

The **diagonal binrel** has $\alpha \mathbf{D} \beta$ IFF $\alpha = \beta$. A binrel is **symm** and **anti-symm** IFF it is a subset of **D**. \square

Counting: On Ω , there are $2^{[K^2]}$ binrels. For $\alpha, \beta \in \Omega$, there are $K[K+1]/2$ many sets $\{\alpha, \beta\}$. [This includes the $\alpha = \beta$ case]. Thus, there are $2^{K[K+1]/2}$ symm-binrels on Ω . Hence, $2^{[K^2]} - 2^{K[K+1]/2}$ counts the *non-symm.* binrels.

Fix **A**, an anti-symm binrel. Each of the K pairs (ω, ω) can either be in or out of **A**; whence 2^K possibilities.

The number of 2-sets $\{\alpha, \beta\}$ is $\binom{K}{2}$. For the two ordered pairs (α, β) and (β, α) , there are $2 \cdot 2 = 4$ possibilities for membership in **A**. The only possibility *inconsistent* with anti-symmetry, is if both (α, β) and (β, α) lie in **A**.

As 3 of the possibilities are compatible with anti-symmetry, it follows that there are $3^{\binom{K}{2}}$ possibilities for those pairs off the diagonal. In consequence, there are $2^K \cdot 3^{\binom{K}{2}}$ anti-symmetric binrels. \spadesuit

ADDENDUM. Note $K^2 = K + 2\frac{K^2-K}{2} = K + 2\binom{K}{2}$, so $2^{[K^2]} = 2^K \cdot 2^{\binom{K}{2}}$. Thus the # of non-symmetric binrels is

$$\begin{aligned} 2^{K^2} - 2^{K[K+1]/2} &= 2^K \cdot [2^{2 \cdot \binom{K}{2}} - 2^{\binom{K}{2}}] \\ &= 2^K \cdot [4^{\binom{K}{2}} - 2^{\binom{K}{2}}]. \end{aligned}$$

For large K we expect that it is easier for a binrel to be non-symm than to be anti-symm. And indeed, the ratio is

$$\text{!}: \frac{\text{NonS}(K)}{\text{AntiS}(K)} = \frac{4^{\binom{K}{2}} - 2^{\binom{K}{2}}}{3^{\binom{K}{2}}} \asymp \left[\frac{4}{3} \right]^{\binom{K}{2}}.$$

The rightmost term is the asymptotic growth rate as $K \nearrow \infty$.

b Sum $\binom{45}{19} + 2\binom{45}{20} + \binom{45}{21} = \binom{T}{B}$, where $T = \binom{47}{\dots\dots\dots}$ and $B = \binom{21}{\dots\dots\dots}$. Using the same idea,

$$\binom{32}{13} + 3\binom{32}{14} + 3\binom{32}{15} + \binom{32}{16} = \binom{\tau}{\beta},$$

where $\tau = \binom{35}{\dots\dots\dots}$ and $\beta = \binom{16}{\dots\dots\dots}$.

Soln: For natnums $N > K$, recall “Pascal’s identity”

$$\dagger: \quad \binom{N}{K} + \binom{N}{K+1} = \binom{N+1}{K+1}.$$

Using (\dagger) twice hands us

$$\binom{45}{19} + \binom{45}{20} + \binom{45}{20} + \binom{45}{21} = \binom{46}{20} + \binom{46}{21} = \binom{47}{21}.$$

For $N > K+1$, the argument above establishes

$$\ddagger: \quad \binom{N}{K} + 2\binom{N}{K+1} + \binom{N}{K+2} = \binom{N+2}{K+2}.$$

Using (\ddagger) twice yields the 2nd-equality in the problem.

In identity $\binom{N}{K} = \binom{N}{K}$, the coeff is $\binom{0}{0}$.

The coeffs in Pascal’s identity are $\binom{1}{0}, \binom{1}{1}$.

In the 1st-sum, the coefficients are $\binom{2}{0}, \binom{2}{1}, \binom{2}{2}$.

The coefficients in the 2nd-sum are $\binom{3}{0}, \binom{3}{1}, \binom{3}{2}, \binom{3}{3}$.

What generalization does this suggest?

20 **c** On $\Omega := [1..29] \times [1..29]$, define binary-relation \mathbf{C} by:
 $(x, \alpha) \mathbf{C} (y, \beta) \text{ IFF } x \cdot \beta \equiv_{30} y \cdot \alpha$. Statement

“Relation \mathbf{C} is an equivalence relation” is: T **(F)**

Crossmult Soln: Relation \mathbf{C} is not transitive, due to \mathbb{Z}_{30} having non-trivial zero-divisors. For a CEX, note $(5, 15) \mathbf{C} (3, 3)$ and $(3, 3) \mathbf{C} (1, 1)$, yet $(5, 15)$ is not \mathbf{C} -related to $(1, 1)$.

What about \mathbb{Z} ? On $\mathbb{Z} \times \mathbb{Z}_{\neq 0}$, define cross-multiply binrel \sim by $(n_1, d_1) \sim (n_2, d_2) \text{ IFF } n_1 d_2 = n_2 d_1$.

To show \sim transitive, suppose

- 1: $(A, \alpha) \sim (B, \beta) \quad \text{and}$
 2: $(B, \beta) \sim (C, \gamma)$,

where α, β, γ are *non-zero*.

Multiplying $A\beta \xrightarrow{\text{from (1)}} B\alpha$ by γ , then reordering [mult. is commutative and associative], yields

$$1': \quad A\gamma \cdot \beta = B\gamma \cdot \alpha.$$

Relation (2) says $B\gamma = C\beta$. Plugging this equality into (1') gives

$$A\gamma \cdot \beta = C\beta \cdot \alpha \xrightarrow{\text{note}} C\alpha \cdot \beta.$$

The KEY STEP: Since β is non-zero (i.e, is not a zero-divisor), we may cancel the β to conclude that $A\gamma = C\alpha$. I.e,
 $(A, \alpha) \sim (C, \gamma)$.

Defn. For posint M , let $\Omega := \Omega_M$ comprise the set of pairs (α, β) with $\alpha, \beta \in [1..M]$. Let $\mathbf{C} := \mathbf{C}_M$ be the *cross-multiply mod- M* binrel on $\Omega \times \Omega$.

A **duo** $\mathbf{p}, \mathbf{q} \in \Omega \times \Omega$ [i.e, a pair of pairs] is an **AW** – an anti-witness – if $\mathbf{p} \mathbf{C} \mathbf{q}$ and $\forall s \in \Omega \times \Omega$: Whenever s is \mathbf{C} -related to either \mathbf{p} or \mathbf{q} , then s is related to both. \square

AW-problem. For each composite modulus M :

*: Characterize the set of AW-duos $\langle \mathbf{p}, \mathbf{q} \rangle$.

The trivial case is $\mathbf{p} = \mathbf{q}$.

The above proof gives another class of AW-duos: Those duos satisfying both $d \perp M$ and $d' \perp M$, where $\mathbf{p} = (n, d)$ and $\mathbf{q} = (n', d')$. \square

20 Suppose that \prec is a total-order on set \mathcal{S} , and \lessdot is total-order on set Ω , both strict. Define binrel \ll on $\mathcal{S} \times \Omega$ by:

$$(b, \beta) \ll (c, \gamma)$$

IFF Either $b \prec c$ or $[b = c \text{ and } \beta \lessdot \gamma]$.

Then:

Relation \ll is a total-order.

$$\textcircled{T} \quad F$$

Suppose \prec and \lessdot are each well-orders.

Then \ll is a well-order.

$$\textcircled{T} \quad F$$

Total-order: Transitivity of \ll is the main issue. Suppose pair $P_0 \ll P_1$ and $P_1 \ll P_2$, where $P_k = (b_k, \beta_k)$.

If either $b_0 \prec b_1$ or $b_1 \prec b_2$, then $b_0 \prec b_2$ [by transitivity of \prec] whence $P_0 \ll P_2$.

So WLOG $b_0 = b_1 = b_2$. Consequently, both $\beta_0 \lessdot \beta_1$ and $\beta_1 \lessdot \beta_2$. [We only need that one inequality be strict, but both are.] The transitivity of \lessdot now gives $P_0 \ll P_2$.

Well-order: Consider a non-empty subset $Q \subset \mathcal{S} \times \Omega$. Extracting the 1st-elt of each ordered-pair, the set

$$\{ b \in \mathcal{S} \mid \exists \beta \text{ with } (b, \beta) \in Q \}$$

is non-void, hence has a \prec -minimum elt; call it $\textcolor{brown}{m}$.

Extracting 2nd-elements, the set

$$\{ \gamma \in \Omega \mid (\textcolor{brown}{m}, \gamma) \in Q \}$$

is non-void, so it has a \lessdot -minimum elt which we'll call $\textcolor{blue}{\mu}$.

THE UPSHOT: Pair $(\textcolor{brown}{m}, \textcolor{blue}{\mu})$ is the \ll -minimum element of subset Q .

Carefully TYPE your two essays, double-spaced. I suggest L^AT_EX.

B2: Recall *Rabbits and Lights* from the zoomester's beginning: To your right are lights $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \dots$. Each light has a toggle button; Press&release: the light illuminates; P&R again, it is extinguished.

Off to your left is a queue of rabbits; so we have

$$\dots \mathcal{R}_3 \mathcal{R}_2 \mathcal{R}_1 \mathcal{L}_1 \mathcal{L}_2 \mathcal{L}_3 \mathcal{L}_4, \dots$$

All the lights are initially off. *If* rabbit- α (i.e., \mathcal{R}_α) jumps, then he will hop on lights $\mathcal{L}_\alpha, \mathcal{L}_{2\alpha}, \mathcal{L}_{3\alpha}, \dots$, turning them all on. If rabbit- β now jumps, he will change the state of lights $\mathcal{L}_\beta, \mathcal{L}_{2\beta}, \mathcal{L}_{3\beta}, \dots$, turning some on, and some off.

A Map f . A (finite or infinite) set $R = \{\alpha_1, \alpha_2, \dots\}$ of rabbit-indices is an element of powerset $\mathbf{P} := \mathcal{P}(\mathbb{Z}_+)$. After those rabbits jump, we have a (finite or infinite) set $L = \{\beta_1, \beta_2, \beta_3, \dots\}$ of indices of illuminated lights. Define $f: \mathbf{P} \rightarrow \mathbf{P}$ by $f(R) := L$.

Our first-day class showed [involution argument, and re-argued using the divisor-count τ -fn] that $f(\mathbb{Z}_+)$ is the set $\{1, 4, 9, \dots\}$ of squares. Evidently $f(\emptyset) = \emptyset$ and $f(\{1, 2\}) = \text{Odds}$. \square

Q1 For each of the following questions, produce either a CEX [counterexample] or a formal proof.

Is f injective? Is f surjective?

Bit-seq defns. View \mathbf{P} as $2^{\mathbb{Z}_+}$; the set of bit-seqs. The empty-set is $\vec{0}$ and $011010100010\dots$ is the set of primes. As we know, $f(\vec{1}) = 1001000010\dots$, the squares.

For $\vec{\mu}, \vec{\nu} \in \mathbf{P}$, let $\vec{\mu} \oplus \vec{\nu}$ be mod-2 bitwise addition (no carry). Automatically, $\vec{\mu} \oplus \vec{\mu} = \vec{0}$. Hence $(\mathbf{P}, \oplus, \vec{0})$ is a group; indeed, a topological group, and each element is an involution.

Let $0^c = 1$ and $1^c = 0$. Then $\vec{\mu}^c := \vec{\mu} \oplus \vec{1}$ is the bitwise complement of $\vec{\mu}$.

Use $\vec{\mu}|_n$ for bit- n in $\vec{\mu}$. Use $n \in \vec{\mu}$ to mean $\vec{\mu}|_n = 1$. \square

Soln. Consider an f -fixed-point $\vec{\mu}$. FTSOC, suppose $\vec{\mu} \neq \vec{0}$. Then there is a smallest m with $\vec{\mu}|_m = 1$. CLAIM: $f(\vec{\mu})|_{2m} \neq \vec{\mu}|_{2m}$ (*Why?* The smallest rabbit in $\vec{\mu}$ is \mathcal{R}_m , so the only other $\vec{\mu}$ -rabbit that could hit \mathcal{L}_{2m} is \mathcal{R}_{2m} . Hence \mathcal{L}_{2m} is off IFF \mathcal{R}_{2m} is in $\vec{\mu}$). UPSHOT: The only f -fixed-pt is $\vec{0}$.

Consider $\vec{\mu}, \vec{\nu} \in \mathbf{P}$ with $f(\vec{\mu}) = f(\vec{\nu})$. Then

$$\vec{0} = f(\vec{\mu}) \oplus f(\vec{\nu}) = f(\vec{\mu} \oplus \vec{\nu}).$$

Hence $\vec{\mu} \oplus \vec{\nu} = \vec{0}$, whence $\vec{\mu} = \vec{\nu}$. So: **f is injective**. \diamond

ALT: f is injective. Consider distinct $\vec{\mu}, \vec{\nu} \in \mathbf{P}$.

At m , the smallest index-of-disagreement, suppose $\vec{\mu}$ has 0 and $\vec{\nu}$ has 1. And, that rabbits $\vec{\mu}|_{[1..m]} \stackrel{\text{note}}{=} \vec{\nu}|_{[1..m]}$ turn lamp- m off, 0. Then $f(\vec{\mu})$ will leave lamp- m OFF, whereas $f(\vec{\nu})$ has lamp- m ON. So $f(\vec{\mu}) \neq f(\vec{\nu})$ \diamond

Q2

For $L \in \text{Range}(f)$, give an algorithm to produce an R for which $f(R) = L$. If you program, can you implement your algorithm in computer code?

Q3

Produce a (*non-trivial*) commutative, associative binop $\$: \mathbf{P} \times \mathbf{P} \rightarrow \mathbf{P}$ which satisfies

$$\forall R, R': f(R \$ R') = f(R) \$ f(R').$$

What can you tell me about this binary operator?

X marks the spot. Viewing \mathbf{P} -elts as sets, then symmetric-difference $\$:= \Delta$ fills the bill.

Viewing \mathbf{P} -elts as bit-sequences, then $\$:= \oplus$, addition-mod-2, is the same operation. \diamond

Q4 What are all the f -fixed-points; those rabbit-lists R with $f(R) = R$?

What can you say about the dynamics of f ? —does it have periodic points of order 2? 3? ...?

What is $f(f(\mathbb{Z}_+)) \stackrel{\text{note}}{=} f(\text{Squares})$? (Conjecture? Computer simulation?)

B3: The *Threeish-numbers* comprise $\mathcal{T} := 1 + 3\mathbb{N}$. In terms of PoP-factorization $\mathbf{T} = p_1^{E_1} \cdots p_K^{E_K}$ [where $p_1 < \dots < p_K$ are \mathbb{Z} -primes, and each E_j is a posint]:

- [i] Give/prove an IFF-characterization for when $\mathbf{T} \in \mathcal{T}$.
- [ii] Give/prove an IFF-char. of when \mathbf{T} is Threeish-irreducible.
- [iii] Give/prove an IFF-char. of when \mathbf{T} is Threeish-prime.
- [iv] Using theorem(s) from THE WEB, prove or disprove: “There are ∞ many Threeish-primes.”

Soln. First, a recap of classwork:

1.1: Example. The set of *Threeish-numbers* is

$$\mathcal{T} := \{1, 4, 7, 10, \dots\} = \{n \in \mathbb{Z}_+ \mid n \equiv_3 1\}.$$

Ok, so \mathcal{T} is not a ring. But \mathcal{T} is sealed under multiplication, has no ZDs, and the only \mathcal{T} -unit is 1; we can make sense of “ \mathcal{T} -irreducible” and “ \mathcal{T} -prime”.

Factoring 100, these two Threeish-factorizations

$$4 \cdot 25 = 100 = 10 \cdot 10,$$

show that none of 4, 10, 25 is Threeish-prime. Yet each is Threeish-irreducible. [This, as their only non-trivial \mathbb{N} -factorizations use non-Threeish numbers]. \square

1.2: ? Threeish conundrum. Given a “target” $\mathbf{T} \in [2.. \infty)$, write its usual \mathbb{N} -prime factorization,

$$1.3: \quad \mathbf{T} = p_1^{E_1} \cdot p_2^{E_2} \cdots p_L^{E_L},$$

with p_1, \dots, p_L distinct, and each E_ℓ a posint.

In terms of (1.3), give an IFF-characterization of:

- i: When \mathbf{T} is Threeishian.
- ii: When \mathbf{T} is Threeish-irreducible.
- iii: When \mathbf{T} is Threeish-prime.
- iv: Are there ∞ many Threeish-primes? –or any at all?
[Hint: Look up Dirichlet’s thm on arith.-progressions.] \diamond

1.5: ? Prime vs. Irred Thm. Using (1.4): Fix a $\mathbf{T} \nmid 3$, and factor this posint as

$$1.6: \quad \mathbf{T} = \underbrace{p_1^{C_1} \cdot p_2^{C_2} \cdots p_J^{C_J}}_{\Rightarrow P} \cdot \underbrace{q_1^{D_1} \cdot q_2^{D_2} \cdots q_K^{D_K}}_{\Rightarrow Q},$$

with each exponent a posint.

- i: Integer \mathbf{T} is in \mathcal{T} IFF $D_1 + \dots + D_K$ is even.
- ii: Our \mathbf{T} is \mathcal{T} -irreducible IFF it has form either $\mathbf{T} = q\hat{q}$ [where these two 3NEG-primes might be equal] or $\mathbf{T} = p$.
- iii: Lastly, \mathbf{T} is \mathcal{T} -prime IFF $\mathbf{T} = p$.

Also, there are infinitely many \mathcal{T} -primes. \diamond

Pf (i). Evidently $\mathbf{T} \equiv_3 1^{C_1+\dots+C_J} \cdot [-1]^{D_1+\dots+D_K}$, so \mathbf{T} is Threeishian IFF $S := D_1 + \dots + D_K$ is even. Henceforth, assume \mathbf{T} is Threeish-irreducible in (1.6). \diamond

Proof of (ii). Since $P \cdot Q$ must be a trivial Threeish-factoring of \mathbf{T} , necessarily either $P = 1$ or $Q = 1$.

CASE: $Q = 1$ Our \mathbf{T} is a single \mathbb{Z} -prime, hence is certainly Threeish-prime.

CASE: $P = 1$ So $S \geq 2$. Were $S \geq 4$ then we could Threeish-factor $\mathbf{T} \stackrel{\text{note}}{=} Q$ as product of two of the q -primes, times the product of the remaining q -primes; *nope*. So \mathbf{T} has form $\mathbf{T} = q\hat{q}$, where these two 3NEG-primes could be equal. The only non-trivial \mathbb{N} -factorization is into non-Threeish-numbers. Hence

$q\hat{q}$ is Threeish-irreducible. \diamond

Proof of (iii). Easily, if \mathbf{T} is Threeish-prime, then \mathbf{T} is Threeish-irred. So WLOG, $\mathbf{T} = q\hat{q}$.

To see that $q\hat{q}$ is *not* Threeish-prime, consider 2, 5, 11, which are 3NEG-primes. At least one of them differs from both q and \hat{q} ; suppose 5 differs. Thus \mathbf{T} divides neither $c := 5q$ nor $d := 5\hat{q}$. Yet \mathbf{T} divides $c \cdot d$. \diamond

Proof of (iv). A special case of [Dirichlet’s thm on arithmetic progressions](#) says $3\mathbb{N} + 1$ owns ∞ many primes –which, we just showed, are precisely the Threeish-primes. \diamond

Aside. An easy extension of Euclid’s method of proof showing $|\text{Primes}| = \infty$, applies to show that arith.prog $3\mathbb{N} - 1$ has ∞ many primes.

Unfortunately, this easy extension doesn’t apply to $3\mathbb{N} + 1$; I don’t know any simple argument for that arith.prog. \square

SOLVED: Keven H., 2013t.

1.4: Standing notation. An odd integer k is “3Pos” if $k \equiv_3 +1$, and is 3NEG if $k \equiv_3 -1$.

Henceforth, use “ p ” for 3Pos-primes, and use “ q ” for 3NEG-primes. \square

B1: _____ 135pts

B2: _____ 100pts

B3: _____ 85pts

Total: _____ 320pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)."* *Name/Signature/Ord*

Ord:

.....

Ord:

.....

Ord:

.....