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Team B

Sets and Logic
MHF3202 7860 Home-B Prof. JLF King

Wednesday, 06Mar2024

Due BoC, Wedn, 20Mar2024, wATMP! Print
this problem-sheet; it is the first page of your write-up,
with the blanks filled in (handwritten). Write DNE if the ob-
ject does not exist or the operation cannot be performed. NB:
DNE 6= {} 6= 0. [Put ordinal, Team-# and sign Honor Code.]

B1: Show no work.

20 20
a

AK-set Ω has 2[K2] − 2
K[K+1]

2

. . . . . . . . . . . . . . . . . . . . . .
non-symmet-

ric binrels. Its number of

anti-symmetric binrels is 2K · 3(
K
2)

. . . . . . . . . . . . . . . . . . . . . . . .
[Note: Do not confuse symmetric with reflexive. Be careful on this
problem.]

Prelim. Binrel A is anti-symmetric if ∀α, β ∈ Ω:
[αAβ & βAα] ⇒ α=β. A binrel can be simultaneously
symm and anti-symm; e.g, the empty relation.

The diagonal binrel has αDβ IFF α=β. A binrel is
symm and anti-symm IFF it is a subset of D. �

Counting: On Ω, there are 2[K
2] binrels . For α,β ∈ Ω,

there are K[K+1]/2 many sets {α, β}. [This includes the

α=β case]. Thus, there are 2K[K+1]/2 symm-binrels on Ω.
Hence, 2[K

2] − 2K[K+1]/2 counts the non-symm. binrels.

Fix A, an anti-symm binrel. Each of the K pairs (((ω, ω)))
can either be in or out of A; whence 2K possibilities.

The number of 2-sets {α, β} is
(
K
2

)
. For the two ordered

pairs (((α, β))) and (((β, α))), there are 2·2 = 4 possibilities for
membership in A. The only possibility inconsistent with
anti-symmetry, is if both (((α, β))) and (((β, α))) lie in A.

As 3 of the possibilities are compatible with anti-sym-
metry, it follows that there are 3(K

2 ) possbilities for those
pairs off the diagonal. In consequence, there are 2K · 3(K

2 )

anti-symmetric binrels. �

Addendum. Note K2 = K + 2K2−K
2

= K + 2
(
K
2

)
, so

2[K2]
= 2K ·2

2·
(
K
2

)
. Thus the # of non-symmetric binrels is

2K
2

− 2K[K+1]/2
= 2K ·

[
2 2·(K

2 ) − 2(K
2 ) ]

= 2K ·
[
4(

K
2 ) − 2(

K
2 )
]
.

For large K we expect that it is easier for a binrel to be non-symm
than to be anti-symm. And indeed, the ratio is

NonS(K)

AntiS(K)
=

4

(
K
2

)
− 2

(
K
2

)
3

(
K
2

) �
[
4

3

](K
2

)
.!!:

The rightmost term is the asymptotic growth rate as K↗∞.
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15 20
b

Sum
(
45
19

)
+ 2
(
45
20

)
+
(
45
21

)
=
(
T
B

)
, where T = 47

. . . . .
and B = 21

. . . . . . .
. Using the same idea,

(
32

13

)
+ 3

(
32

14

)
+ 3

(
32

15

)
+

(
32

16

)
=

(
τ

β

)
,

where τ = 35
. . . . . . .

and β = 16
. . . . . . .

.

Soln: For natnums N>K, recall “Pascal’s identity”(
N
K

)
+
(

N
K+1

)
=
(
N+1
K+1

)
.†:

Using (†) twice hands us(
45
19

)
+
(
45
20

)
+
(
45
20

)
+
(
45
21

)
=
(
46
20

)
+
(
46
21

)
=
(

47
21

)
.

For N > K+1, the argument above establishes(
N
K

)
+ 2
(

N
K+1

)
+
(

N
K+2

)
=
(
N+2
K+2

)
.‡:

Using (‡) twice yields the 2nd-equality in the problem.

In identity
(
N
K

)
=
(
N
K

)
, the coeff is

(
0
0

)
.

The coeffs in Pascal’s identity are
(
1
0

)
,
(
1
1

)
.

In the 1st-sum, the coefficients are
(
2
0

)
,
(
2
1

)
,
(
2
2

)
.

The coefficients in the 2nd-sum are
(
3
0

)
,
(
3
1

)
,
(
3
2

)
,
(
3
3

)
.

What generalization does this suggest?

Filename: Classwork/NapoSelo/SeLo2024g/b-hm.SeLo2024g.latex
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20
c

On Ω := [1 .. 29]×[1 .. 29], define binary-relation C by:
(((x, α))) C(((y, β))) IFF x·β ≡30 y·α. Statement
“Relation C is an equivalence relation” is: T F
Crossmult Soln: Relation C is not transitive, due to
Z30 having non-trivial zero-divisors. For a CEX, note
(((5, 15))) C (((3, 3))) and (((3, 3))) C (((1, 1))), yet (((5, 15))) is not
C-related to (((1, 1))).

What about Z? On Z× Z6=0, define cross-multiply
binrel ∼ by (((n1, d1))) ∼ (((n2, d2))) IFF n1d2 = n2d1.

To show ∼ transitive, suppose

(((A,α))) ∼ (((B, β))) and1:
(((B, β))) ∼ (((C, γ))) ,2:

where α,β,γ are non-zero.
Multiplying Aβ

from (1)
======= Bα by γ, then reordering

[mult. is commutative and associative], yields

Aγ · β = Bγ · α .1′:

Relation (2) says Bγ = Cβ. Plugging this equality
into (1′) gives

Aγ · β = Cβ · α note
=== Cα · β .

The Key Step: Since β is non-zero (i,e, is not a zero-divisor),
we may cancel the β to conlude that

�� ��Aγ = Cα . I.e,
(((A,α))) ∼ (((C, γ))).

Defn. For posint M, let Ω := ΩM comprise the set of
pairs (((α, β))) with α,β ∈ [1 ..M). Let C:= CM be the cross-
multiply mod-M binrel on Ω×Ω.

A duo p,q ∈ Ω×Ω [i.e, a pair of pairs] is an AW –an anti-
witness– if pCq and ∀s ∈ Ω×Ω: Whenever s is C-related
to either p or q, then s is related to both. �

AW-problem. For each composite modulus M:

Characterize the set of AW-duos 〈p,q〉.∗:

The trivial case is p = q.
The above proof gives another class of AW-duos: Those

duos satisfying both d ⊥ M and d′ ⊥ M, where p = (((n, d)))
and q = (((n′, d′))). �

Filename: Classwork/NapoSelo/SeLo2024g/b-hm.SeLo2024g.latex
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20 20
d

Suppose that ≺≺≺ is a total-order on set S, and <<<
is total-order on set Ω, both strict. Define binrel � on
S×Ω by:

(((b, β))) � (((c, γ)))

IFF Either b≺≺≺ c or [b = c and β <<< γ ].

Then:
Relation� is a total-order. T F

Suppose ≺≺≺ and <<< are each well-orders.

Then� is a well-order. T F

Total-order: Transitivity of� is the main issue. Sup-
pose pair P0� P1 and P1� P2, where Pk = (((bk, βk))).

If either b0 ≺≺≺ b1 or b1 ≺≺≺ b2, then b0 ≺≺≺ b2 [by transitivity
of ≺≺≺ ] whence P0� P2.

So WLOG b0 = b1 = b2. Consequently, both β0 <<< β1
and β1 <<< β2. [We only need that one inequality be strict, but
both are.] The transitivity of <<< now gives P0� P2.

Well-order: Consider a non-empty subset Q ⊂ S×Ω.
Extracting the 1st-elt of each ordered-pair, the set{

b ∈ S
∣∣∣ ∃β with (((b, β))) ∈ Q

}
is non-void, hence has a ≺≺≺-minimum elt; call itmmm.

Extracting 2nd-elements, the set{
γ ∈ Ω

∣∣∣ (((mmm, γ))) ∈ Q
}

is non-void, so it has a <<<-minimum elt which we’ll call µµµ.

The Upshot: Pair (((mmm,µµµ))) is the �-minimum ele-
ment of subset Q.

Carefully Type your two essays, double–spaced. I
suggest LATEX.

Filename: Classwork/NapoSelo/SeLo2024g/b-hm.SeLo2024g.latex
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B2: Recall Rabbits and Lights from the zoomester’s be-
ginning: To your right are lights L1,L2,L3, . . . . Each light
has a toggle button; Press&release: the light illuminates;
P&R again, it is extinguished.

Off to your left is a queue of rabbits; so we have

. . .R3 R2 R1 L1 L2 L3 L4, . . .

All the lights are initially off. If rabbit-α (i.e, Rα) jumps,
then he will hop on lights Lα,L2α,L3α, . . . , turning them
all on. If rabbit-β now jumps, he will change the state of
lights β, 2β, 3β, . . ., turning some on, and some off.
A Map f . A (finite or infinite) set R = {α1,α2, . . .} of
rabbit-indices is an element of powerset PPP := P(Z+).
After those rabbits jump, we have a (finite or infinite) set
L = {β1,β2,β3, . . .} of indices of illuminated lights. De-
fine f :PPP→PPP by f(R) := L.

Our first-day class showed [involution argument, and
re-argued using the divisor-count τ -fnc] that f(Z+) is the
set {1, 4, 9, . . .} of squares. Evidently f(∅) = ∅ and
f
(
{1, 2}

)
= Odds. �

Q1
For each of the following questions, produce either

a CEX [counterexample] or a formal proof.
Is f injective? Is f surjective?

Bit-seq defns. View PPP as 2Z+ ; the set of bit-seqs. The
empty-set is ~0 and 011010100010 . . .. is the set of primes.
As we know, f(~1) = 1001000010 . . ., the squares.

For ~µ,~ν ∈ PPP, let ~µ⊕ ~ν be mod-2 bitwise addition (no
carry). Automatically, ~µ⊕ ~µ = ~0. Hence (((PPP,⊕,~0))) is a
group; indeed, a topological group, and each element is an
involution.

Let 0c = 1 and 1c = 0. Then ~µc := ~µ⊕~1 is the bitwise
complement of ~µ.

Use ~µ�n for bit-n in ~µ. Use n ∈ ~µ to mean ~µ�n = 1. �

Soln. Consider an f -fixed-point ~µ. FTSOC, suppose
~µ 6= ~0. Then there is a smallestm with ~µ�m = 1. Claim:
f(~µ)�2m 6= ~µ�2m (Why? The smallest rabbit in ~µ is Rm, so the
only other ~µ-rabbit that could hit L2m is R2m. Hence L2m is off

IFF R2m is in ~µ.). Upshot: The only f -fixed-pt is ~0 .

Consider ~µ,~ν ∈ PPP with f(~µ) = f(~ν). Then

~0 = f(~µ)⊕ f(~ν) = f(~µ⊕ ~ν) .

Hence ~µ⊕ ~ν = ~0, whence ~µ = ~ν. So: f is injective . �

Alt: f is injective. Consider distinct ~µ,~ν ∈ PPP.
At m, the smallest index-of-disagreement, suppose ~µ

has 0 and ~ν has 1. And, that rabbits ~µ�[1 ..m)
note
=== ~ν�[1 ..m)

turn lamp-m off, 0. Then f(~µ) will leave lamp-m OFF,
whereas f(~ν) has lamp-m ON. So f(~µ) 6= f(~ν) �

Q2
For L ∈ Range(f), give an algorithm to produce an R

for which f(R) = L. If you program, can you implement
your algorithm in computer code?

Q3
Produce a (non-trivial) commutative, associative

binop $ :PPP×PPP→ PPP which satisfies

∀R,R′ : f
(
R $ R′

)
= f

(
R
)

$ f
(
R′
)
.

What can you tell me about this binary operator?

X marks the spot. Viewing PPP-elts as sets, then symmetric-
difference $ := 4 fills the bill.

Viewing PPP-elts as bit-sequences, then $ := ⊕, addition-
mod-2, is the same operation. �

Filename: Rabbits-Lights.extend.tex
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Q4
What are all the f–fixed-points; those rabbit-lists R

with f(R) = R?
What can you say about the dynamics of f? —does it

have periodic points of order 2? 3? . . . ?
What is f

(
f(Z+)

) note
=== f

(
Squares

)
? (Conjecture? Computer

simulation?)

Filename: Classwork/NapoSelo/SeLo2024g/b-hm.SeLo2024g.latex
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B3: The Threeish-numbers comprise TTT := 1 + 3N.
In terms of PoP-factorization T = pE1

1 · . . . · p
EK

K [where
p1< . . .<pK are Z-primes, and each Ej is a posint]:

i
Give/prove an IFF-characterization for when T ∈ TTT .

ii
Give/prove an IFF-char. of when T is Threeish-

irreducible.

iii
Give/prove an IFF-char. of when T is Threeish-prime.

iv
Using theorem(s) from The Web, prove or disprove:

“There are ∞ly many Threeish-primes.”

Soln. First, a recap of classwork:

1.1: Example. The set of Threeish-numbers is

TTT := {1, 4, 7, 10, . . .} = {n ∈ Z+ | n ≡3 1} .

Ok, so TTT is not a ring. But TTT is sealed under multiplica-
tion, has no ZDs, and the only TTT -unit is 1; we can make
sense of “TTT -irreducible” and “TTT -prime”.

Factoring 100, these two Threeish-factorizations

4 · 25 = 100 = 10 · 10 ,

show that none of 4, 10, 25 is Threeish-prime. Yet each is
Threeish-irreducible. [This, as their only non-trivial N-factoriza-
tions use non-Threeish numbers]. �

1.2: ??Threeish conundrum. Given a “target” T ∈ [2 ..∞),
write its usual N-prime factorization,

T = pE1
1 · p

E2
2 · . . . · p

EL

L ,1.3:

with p1, . . . , pL distinct, and each E` a posint.
In terms of (1.3), give an IFF-characterization of:

i: When T is Threeishian.
ii: When T is Threeish-irreducible.
iii: When T is Threeish-prime.
iv: Are there∞ly many Threeish-primes? –or any at all?

[Hint: Look up Dirichlet’s thm on arith.-progressions.] ♦

Solvedby: Keven H., 2013t.

1.4: Standing notation. An odd integer k is “3Pos”
if k ≡3 1, and is 3Neg if k ≡3 1.

Henceforth, use “p” for 3Pos-primes, and use
“q” for 3Neg-primes. �

1.5: ??Prime vs. Irred Thm. Using (1.4): Fix a Tr|� 3, and
factor this posint as

T = pC1
1 ·p

C2
2 · · · p

CJ

J︸ ︷︷ ︸
=: P

· qD1
1 ·q

D2
2 · · · q

DK

K︸ ︷︷ ︸
=: Q

,1.6:

with each exponent a posint.

i: Integer T is in TTT IFF D1 + . . .+DK is even.

ii: Our T is TTT -irreducible IFF it has form either T = qq̂
[where these two 3Neg-primes might be equal] or T = p.

iii: Lastly, T is TTT -prime IFF T = p.

Also, there are infinitely many TTT -primes. ♦

Pf (i). Evidently T ≡3 1C1+...+CJ · [ 1]D1+...+DK , so T is
Threeishian IFF S := D1 + . . .+DK is even. Henceforth,
assume T is Threeish-irreducible in (1.6). �

Proof of (ii).Since P ·Qmust be a trivial Threeish-factoring
of T, necessarily either P = 1 or Q = 1.�� ��Case: Q = 1 Our T is a single Z-prime, hence is
certainly Threeish-prime.�� ��Case: P = 1 So S ≥ 2. Were S ≥ 4 then we could
Threeish-factor Tnote

===Q as product of two of the q-primes,
times the product of the remaining q-primes; nope. So T
has form T = qq̂, where these two 3Neg-primes could be
equal. The only non-trivial N-factorization is into non–
Threeish-numbers. Hence�� ��qq̂ is Threeish-irreducible . �

Proof of (iii). Easily, if T is Threeish-prime, then T is
Threeish-irred. So WLOG, T = qq̂.

To see that qq̂ is not Threeish-prime, consider 2,5,11,
which are 3Neg-primes. At least one of them differs from
both q and q̂; suppose 5 differs. Thus T divides neither
c := 5q nor d := 5q̂. Yet T divides c · d. �

Proof of (iv). A special case of Dirichlet’s thm on arithmetic
progressions says 3N+ 1 owns ∞ly many primes –which, we
just showed, are precisely the Threeish-primes. �

Aside.An easy extension of Euclid’s method of proof show-
ing |Primes|=∞, applies to show that arith.prog 3N− 1
has ∞ly many primes.

Unfortunately, this easy extension doesn’t apply to
3N + 1; I don’t know any simple argument for that
arith.prog. �

Filename: Classwork/NapoSelo/SeLo2024g/b-hm.SeLo2024g.latex
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B1: 135pts

B2: 100pts

B3: 85pts

Total: 320pts

Honor Code: “I have neither requested nor received help
on this exam other than from my team-mates and my professor
(or his colleague).” Name/Signature/Ord

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ord:

. .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ord:

. .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ord:

. .
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