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a K2 K[K+1]

20 2 A K-set Q) has 2[ I _ 2 2 non-symmet-
ric binrels. Its number of =~~~ ;
anti-symmetric binrels is 2 3( 2 >
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Staple!

Sets and Logic Home-B Prof. JLF King
MHF3202 7860 Wednesday, 06Mar2024

Due BoC, Wedn, 20Mar2024, wATMP! Print
this problem-sheet; it is the first page of your write-up,
with the blanks filled in (handwritten). Write DNE if the ob-
ject does not exist or the operation cannot be performed. NB:
DNE # {} # 0. [Put ordinal, Team-# and sign Honor CoDE.]

B1: Show no work,

[Note: Do not confuse symmetric with reflexive. Be careful on this

problem.]

Prelim. Binrel A is anti-symmetric if Vo, € Q:
[@AfB & BAa) = a=(. A binrel can be simultaneously

symm and anti-symm; e.g, the empty relation.
The diagonal binrel has DS IFF a=f3. A binrel is
symm and anti-symm |FF it is a subset of D. O

Counting:  On €, there are 25*] binrels . For a,f € Q,
there are K|[K+1]/2 many sets {«,3}. [This includes the

a=4 case]. Thus, there are oKIK+1)/2

Hence, OIK*] _ 9KIKHU/2 (ounts the non-symm. binrels.

symm-binrels on €.

Fix A, an anti-symm binrel. Each of the K pairs (w,w)
can either be in or out of A; whence 2 possibilities.

The number of 2-sets {«, 5} is ([2( ). For the two ordered
pairs (o, 3) and (3, ), there are 2-2 = 4 possibilities for
membership in A. The only possibility inconsistent with
anti-symmetry, is if both («, 3) and (3, ) lie in A.

As 3 of the possibilities are compatible with anti-sym-
metry, it follows that there are :%(I’—;) possbilities for those

K
pairs off the diagonal. In consequence, there are 2K 3( 2)
anti-symmetric binrels. ¢

2 g
ADDENDUM. Note K2 = K+28 -5 = k42(%), <o
-2 -2 (K
QLT _ 9K 9 (2 ) Thus the # of non-symmetric binrels is

21\'2 _ oKI[K+1)/2 _ QI&'[QZ-({;) B 2([_)}
_ 21\'.[4(2’) _ 2<2">]

For large K we expect that it is easier for a binrel to be non-symm
than to be anti-symm. And indeed, the ratio is

IF NonS(K) 4(5) _ (%) [4] (’5)

AntS(K) 5(5) =~ 3

2

The rightmost term is the asymptotic growth rate as K ~co.

Team B
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15 2 Sum (113) + 2(;8) + (;Li)) = (g), where T'= 47
[

and B= 21 . Using the same idea,

32 +332 +332+32 (T
13 14 15 16)  \B/)’
where 7 = 35 and B = 16

Soln: For natnums N> K, recall “Pascal’s identity”
f: (%) + (K]YH) = (}AZ:) c
Using (}) twice hands us
() + 6@ + @+ = @+6) = ()
For N > K+1, the argument above establishes
I (x) +2(50) + (32) = (x12)-
Using (1) twice yields the 2"d-equality in the problem.
In identity (}.) = (}), the coeff is (J).

The coefts in Pascal’s identity are ((1)) (D

In the 1%%-sum, the coefficients are ((2))7 (f) (;)

The coefficients in the 2"%-sum are (g)7 (:15) (‘23) (i)

What generalization does this suggest?

Filename: Classwork/NapoSelo/SeL02024g/b-hm.SeL02024g.latex
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2 On = [1..29]x[1 ..29], define binary-relation C by:
(z,0) C(y,B) IFF 28 =3 y-a. Statement

“Relation C is an equivalence relation” is: T @

Crossmult Soln: Relation C is not transitive, due to
Zso having non-trivial zero-divisors. For a CEX, note
(5,15) C (3,3) and (3,3) C (1,1), yet (5,15) is not
C-related to (1,1).

What about Z? On Z x Zy,, define cross-multiply
binrel ~ by (n1,d1) ~ (n2,d2) IFF nidy = nad;.

To show ~ transitive, suppose

1: (A,a) ~ (B,ﬁ) and
2: (B,8) ~(C.),

where «a, 3,y are non-zero.

from (1)

Multiplying AfS =——= Ba by ~, then reordering

[mult. is commutative and associative], yields

1 Ay-8 = By-a.

Relation (2) says By = Cf3. Plugging this equality
into (1) gives

note

Av- 8 = CB-a = Ca- .

The KEY STEP: Since (3 is non-zero (i,e, is not a zero—divisor),

we may cancel the 5 to conlude that . Le,

(4,0) ~(C,7).

Defn.  For posint M, let Q := Qp comprise the set of
pairs («, 3) with a,3 € [1..M). Let C:= Cy be the cross-
multiply mod-M binrel on 2x).

A duo p,q € QOXQ [i.e, a pair of pairs| is an AW —an anti-
witness— if pCq and Vs € Ox): Whenever s is C-related
to either p or q, then s is related to both. O

AW-problem. For each composite modulus M:

x:  Characterize the set of AW-duos (p, q).

The trivial case is p = q.

The above proof gives another class of AW-duos: Those
duos satisfying both d | M and d’ | M, where p = (n,d)
and q = (n',d). O

Filename: Classwork/NapoSelo/SeLo2024g/b-hm.SeL02024g.latex
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d
20 2 Suppose that is a total-order on set &, and <
is total-order on set €2, both strict. Define binrel < on

X by:

(b, 8) < (¢,7)
IFF  FEither b<c or [b=c and B<~].
Then:

(T) F
(T) F

Total-order: Transitivity of < is the main issue. Sup-
pose pair Py < P; and P; < Py, where Py = (by, k).

If either by < by or by
of <| whence Py < Ps.

So WLOG by = by = by. Consequently, both 5y < 4
and £ < fs. [We only need that one inequality be strict, but
both are.] The transitivity of < now gives Py < Ps.

Relation < is a total-order.
Suppose < and < are each well-orders.

Then < is a well-order.

bs, then by bo [by transitivity

Well-order: Consider a non-empty subset Q C Sx€.
Extracting the 15%-elt of each ordered-pair, the set

{ € ‘ 3B with(,,B)eQ}

is non-void, hence has a <-minimum elt; call it

Extracting 2"9-elements, the set

{769’( W)GQ}

is non-void, so it has a <-minimum elt which we’ll call p.

THE UpsHOT: Pair ( ,p,) is the <-minimum ele-

ment of subset ().

Page 4 of 8

Carefully TYPE your two essays, double—spaced. I
suggest TEX.

Filename: Classwork/NapoSelo/SeLo2024g/b-hm.SeL02024g.latex
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B2: Recall Rabbits and Ligﬁts from the zoomester’s be-
ginning: To your right are lights /1, L2, L3, .... Each light
has a toggle button; Press&release: the light illuminates;
P&R again, it is extinguished.

Off to your left is a queue of rabbits; so we have

RJRle 1 Lo Llglg,...

All the lights are initially off. If rabbit-cv (i, R.) jumps,
then he will hop on lights £, L24, L34, - - -, turning them
all on. If rabbit-3 now jumps, he will change the state of
lights 3, 23, 303, ..., turning some on, and some off.

A Map f. A (finite or infinite) set R = {a;,as,...} of
rabbit-indices is an element of powerset P = P(Z.).
After those rabbits jump, we have a (finite or infinite) set
L = {83,,8,,8s,...} of indices of illuminated lights. De-
fine f:P—P by f(R) = L.

Our first-day class showed [invo]ution argument, and
re-argued using the divisor-count 7-fuc] that f(Z,) is the
set {1,4,9,...} of squares. Evidently f(@)=@ and
f({l, 2}) = Odds. (]

Q1
For each of the following questions, produce either
a CEX [counterexample] or a formal proof.

Is f injective? Is f surjective?

Bit-seq defns.  View P as 2%+; the set of bit-seqs. The
empty-set is 0 and 011010100010 ... is the set of primes.
As we know, f(1) = 1001000010.. ., the squares.

For fi,v € P, let i ® U be mod-2 bitwise addition (no
carry). Automatically, /i@ i = 0. Hence (P,®,0) is a
group; indeed, a topological group, and each element is an
involution.

Let 0¢° =1 and 1¢ = 0. Then ji¢ = i ® 1 is the bitwise
complement of /.

Use ji|,, for bit-n in fi. Use n € i to mean /|, = 1. O

Soln. Consider an f-fixed-point . FTSOC, suppose
ji # 0. Then there is a smallest 1m with i, = 1. CLAIM:
f(ﬁ)J om 7 Hlam (Why? The smallest rabbit in [i is R, so the
only other fi-rabbit that could hit

IFF Royy, is in fi.). UPSHOT: ‘ The only f-fixed-pt is 0

2m 1S Rom . Hence [ oy, is off

Consider ji,v € P with f(ii) = f(¥). Then
0= f@ef@) = fior).

Hence [i & 7 = 0, whence i = 7. So: . ¢

Page 5 of 8

Avrt: f is injective. Consider distinct ji,v/ € P.
At m, the smallest index-of-disagreement, suppose /i

note

has 0 and 7 has 1. And, that rabbits fil[; _.,,) = V][ . m)
turn lamp-m off, 0. Then f(i) will leave lamp-m OFF,
whereas f(7) has lamp-m ON.  So f(p) # f(V) ¢

Q2

For L € Range(f), give an algorithm to produce an R
for which f(R) = L. If you program, can you implement
your algorithm in computer code?

Q3
Produce a (non-trivial) commutative, associative
binop $:PxP — P which satisfies

f(R$ R') = f(R) $ f(R’).

What can you tell me about this binary operator?

VR,R’:

X marks the spot. Viewing P-elts as sets, then symmetric-
difference $ := A fills the bill.

Viewing P-elts as bit-sequences, then $ = &, addition-
mod-2, is the same operation. ¢

Filename: Rabbits-Lights.extend.tex
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What are all the f—fixed-points; those rabbit-lists R
with f(R) =R?

What can you say about the dynamics of f? —does it
have periodic points of order 27 37 ...7

What is f (f(Z+)) s f (Squares)? (Conjecture? Computer

simulation?)

Filename: Classwork/NapoSelo/SeL02024g/b-hm.SeL02024g.latex
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B3: The Threeish-numbers comprise 7 =1 + 3N.
In terms of PoP-factorization T = plF‘1 o pf:f‘ [where
p1<...<pk are Z-primes, and each F; is a posint]:

i
Give/prove an |IFF-characterization for when T € 7.

Give/prove an IFF-char. of when T is Threeish-
irreducible.

iii
Give/prove an IFF-char. of when T is Threeish-prime.

iv
Using theorem(s) from Tue Wes, prove or disprove:
“There are coly many Threeish-primes.”

Soln. First, a recap of classwork:

1.1: Ezample. The set of Threeish-numbers is
T = {1,4,7,10,...} = {n€Zy|n =51} .

Ok, so 7T is not a ring. But 7 is sealed under multiplica-
tion, has no ZDs, and the only 7 -unit is 1; we can make
sense of “T-irreducible” and “7 -prime”.

Factoring 100, these two Threeish-factorizations

4.25 = 100 = 10- 10,

show that none of 4,10, 25 is Threeish-prime. Yet each is
Threeish-irreducible. [This, as their only non-trivial N-factoriza-
tions use non-Threeish numbers]. O

1.2: ?Threeish conundrum. Given a “target” T € [2..00),
write its usual N-prime factorization,

1.3: T = pf1~p§2~...~pr,

with pq,...,p; distinct, and each Ey a posint.
In terms of (1.3), give an IFF-characterization of:
i: When T is Threeishian.
ii: When T is Threeish-irreducible.
iiii. When T is Threeish-prime.
iv: Are there ooly many Threeish-primes? —or any at all?
[Hint: Look up Dirichlet's thm on arith.—progressions.] O

SOWVER: Keven H., 2013t.

1.4: Standing notation. An odd integer k is “3P0s”
if £ =3 +1, and is 3NEG if k =35 -1.

Henceforth, use “p” for 3P0S-primes, and use

“q” for ANEG-primes. -

Page 7 of 8

1.5: ?Prime vs. Irred Thm. Using (1.4): Fix a T} 3, and
factor this posint as

c, C C D D D
1'6: T:pll.p22...pJ‘].qll.q22...qKK7

=P =Q

with each exponent a posint.

iz Integer T isinT IFF Dy + ...+ Dg is even.

ii: Our T is T-irreducible IFF it has form either T = qg
[Where these two 3NEG-primes might be equal] or T = p.

i1z Lastly, T is T-prime IFF T = p.

Also, there are infinitely many T -primes. O

Pf (i). Evidently T =3 1€1+-+Cs . [-]Pit+Dx 50 T is
Threeishian IFF S := Dy + ...+ Dy is even. Henceforth,
assume T is Threeish-irreducible in (1.6). ¢

Proof of (ii).Since P-() must be a trivial Threeish-factoring
of T, necessarily either P =1 or () = 1.

CASE: Q=1
certainly Threeish-prime.

So S > 2. Were S > 4 then we could

Threeish-factor Tm)teQ as product of two of the g-primes,
times the product of the remaining g-primes; nope. So T
has form T = qq, where these two 3NEG-primes could be
equal. The only non-trivial N-factorization is into non—
Threeish-numbers. Hence

Our T is a single Z-prime, hence is

[qa is Threeish—irreducible}. ¢

Proof of (iii).  Easily, if T is Threeish-prime, then T is
Threeish-irred. So WLOG, T = ¢q.

To see that gq is not Threeish-prime, consider 2,511,
which are 3NEG-primes. At least one of them differs from
both g and g; suppose 5 differs. Thus T divides neither
c:=5gmnor d:=5q. Yet T divides ¢ d. ¢

Proof of (iv). A special case of Dirichlet's thm on arithmetic
progressions says 3N + 1 owns ocoly many primes —which, we
just showed, are precisely the Threeish-primes. ¢

Aside. An easy extension of Euclid’s method of proof show-
ing |Primes|=c0, applies to show that arith.prog 3N — 1
has ocoly many primes.

Unfortunately, this easy extension doesn’t apply to
3N+ 1; I don’t know any simple argument for that
arith.prog. (]
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B1: 135pts
B2: 100pts
B3: 85pts
Total: 320pts

HONOR CODE: ‘I have neither requested nor received help
on this exam other than from my team-mates and my professor
(or his colleague).” Name/Signature/Ord

Ord

Lo ¢ o o o o ¢ ¢ ¢ 6 6 o o 6 6 6 6 6 6 066 66660606000 s s e s e 0000 s e e e o0 PN ) IS [ I |
Ord

Lo ¢ o 6 6 6 6 6 6 6 6 6 6666 6 6 6666066666 6606060666600 060006 s s e PN ) IS [ I |
Ord
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