

Sets and Logic
MHF3202 1079

Home-B

Prof. JLF King
Wedn., 18Oct2023

Due **BoC, Monday, 23Oct2023**, wATMP! Print this problem-sheet; it is the first page of your write-up, with the blanks filled in (handwritten). Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE $\neq \{\} \neq 0$** . [Put ordinal, Team-# and sign HONOR CODE.]

B1: Show no work.**a** For a finite list \mathcal{S} of posints, define

$$\mu_{\mathcal{S}}(N) := \left\{ k \in [1..N] \mid \exists d \in \mathcal{S} \text{ with } d \bullet k \right\}.$$

For $\mathcal{S} := \{6, 7, 10\}$, the Inclusion-Exclusion formula (using the floor fnc) for the number of elements, $|\mu_{\mathcal{S}}(N)|$, is

(Write your answer, using the floor function as appropriate, in form [term + term + term] – [term + term + term] + term.

The terms are computed from the $\{6, 7, 10\}$ numbers.)

When $N := 67$, then, $|\mu_{\{6, 7, 10\}}(67)| = \dots$.

b Let \mathcal{P}_{∞} denote the family of all *co-finite* subsets of \mathbb{N} . That is, a subset $S \subset \mathbb{N}$ is an element of \mathcal{P}_{∞} IFF $\mathbb{N} \setminus S$ is finite. Define relation \bowtie on \mathcal{P}_{∞} by: $A \bowtie B$ IFF $A \cap B$ is infinite.

Stmt “This \bowtie is an equivalence-relation” is:

T **F**

c Suppose that \prec is a total-order on set \mathcal{S} , and $<$ is total-order on set Ω , both strict. Define binrel \ll on $\mathcal{S} \times \Omega$ by:

$$(b, \beta) \ll (c, \gamma)$$

IFF Either $b \prec c$ or $[b = c \text{ and } \beta < \gamma]$.

Then:

Relation \ll is a total-order.

T **F**

Suppose \prec and $<$ are each well-orders.

Then \ll is a well-order.

T **F**

Carefully TYPE your two essays, double-spaced. I suggest L^AT_EX, but other systems are ok too.

B2: Let \mathbf{E}_n be the equilateral triangle with side-length 2^n . This \mathbf{E}_n can be tiled in an obvious way by 4^n many little-triangles [copies of \mathbf{E}_0]; [picture on blackboard] The “*punctured* \mathbf{E}_n ”, written $\widetilde{\mathbf{E}}_n$, has its topmost copy of \mathbf{E}_0 removed.

A (*trapezoid*) *zoid*, \mathbf{T} , comprises three copies of \mathbf{E}_0 glued together in a row, rightside-up, upside-down, rightside-up [picture on blackboard] [A *zoid-tiling* allows all six rotations of \mathbf{T} .]

i PROVE: For each n , board $\widetilde{\mathbf{E}}_n$ admits a zoid-tiling.

ii Let Δ_k be the equilateral triangle of sidelength k ; so \mathbf{E}_n is Δ_{2^n} . Triangle Δ_k comprises k^2 little-triangles.

For what values of k does Δ_k admit a zoid-tiling?

For which k does $\widetilde{\Delta}_k$ admit a zoid-tiling?

iii Do something non-trivial, extra. E.g: Do the results extend with the puncture anywhere? Can you count the # of tilings of a given region? Are there regions admitting non-isomorphic tilings?

B3: Prove, for each natnum N , that

$$\sum_{k=0}^N \left[\binom{N}{k}^2 \right] = \binom{2N}{N}.$$

[Can use Double-counting, or Induction.]

b Generalize this problem non-trivially.

B1: _____ 115pts

B2: _____ 110pts

B3: _____ 70pts

Total: _____ 295pts

HONOR CODE: “I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).” Name/Signature/Ord

Ord: _____

Ord: _____

Ord: _____