

Sets and Logic
MHF3202 139A

Home-B

Prof. JLF King
Tues., 18Oct2022

Due **BoC, Monday, 24Oct2022**, wATMP! Print this problem-sheet; it is the first page of your write-up, with the blanks filled in (handwritten). Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$. [Put ordinal, Team-# and sign HONOR CODE.]

B1: *Show no work.*

a

Write the free vars in each of these expressions.

$$\exists n \in \mathbb{N}: f(n) \subset \bigcup_{\ell=p-4}^{p+7} \{x \in \mathbb{Z} \mid \ell \cdot n \equiv_5 x^2\}$$

$\overbrace{\hspace{10em}}$
 $E3$

$\overbrace{\hspace{10em}}$
 $E2$

$\overbrace{\hspace{10em}}$
 $E1$

E3: \dots E2: \dots E1: \dots

b

Let N be the number of permutations of the letters in **ABRACADABRA**. As

a multinomial-coeff, $N = \binom{\dots}{\dots}$. [Write the bottom integers in **increasing** order, $p_1 \leq p_2 \leq \dots$. The bottom integers should sum to the top integer.] Written as product-of-binomials, $N = \dots$.

Evaluate each binomial as an integer, and write N as a product of these integers: $N = \dots$.

c

The number, U , of permutations of **[1..6]** which have **neither** $\textcircled{4} \textcircled{1}$ **nor** $\textcircled{2} \textcircled{3} \textcircled{4}$ is \dots .[Write in Incl-Excl form: $\square - \square + \square - \square + \dots$ as appropriate.]As a single numeral, $U = \dots$.

d

Let \mathcal{P}_∞ denote the family of all **co-finite** subsets of \mathbb{N} . That is, a subset $S \subset \mathbb{N}$ is an **element** of \mathcal{P}_∞ IFF $\mathbb{N} \setminus S$ is **finite**. Define relation \bowtie on \mathcal{P}_∞ by: $A \bowtie B$ IFF $A \cap B$ is infinite.Stmt “*This \bowtie is an equivalence-relation*” is: T F

e

Suppose that \prec is a total-order on set \mathcal{S} , and \lessdot is total-order on set Ω , both strict. Define binrel \ll on $\mathcal{S} \times \Omega$ by:

$$(b, \beta) \ll (c, \gamma)$$

IFF Either $b \prec c$ or $[b = c \text{ and } \beta \lessdot \gamma]$.

Then:

Relation \ll is a total-order. T F Suppose \prec and \lessdot are each well-orders.Then \ll is a well-order. T F

Carefully TYPE your two essays, double-spaced. I suggest L^AT_EX, but other systems are ok too.

B2: [A dodecahedron is a regular polyhedron having 12 faces, 20 vertices and 30 edges; the faces are pentagons.] Two vertices of a regular dodecahedron are **cousins** if they are **distinct** vertices of a common face. [Each vertex has $[3 \cdot 4] - 3 = 9$ cousins.] Write $v \sim w$ to indicate that v and w are cousins. Easily, \sim is symmetric, and anti-reflexive. You can check that \sim is **not** transitive.

A **labeling** of a regular dodecahedron assigns, to each vertex, a **positive integer**. A labeling is **legal** IFF **no** pair $v \sim w$ of vertices is assigned the same label.

i Prove there is no legal labeling with vertex-sum [the sum of the 20 labels] equaling 55.

ii Let $\mathcal{S} \subset \mathbb{Z}_+$ be the **set** of vertex-sums obtainable from legal-labelings. Characterize \mathcal{S} explicitly, with proof. You will likely need to construct some particular legal-labelings. [You showed, above, that $\mathcal{S} \not\geq 55$.]

B3: Prove, for each natnum N , that

$$\sum_{k=0}^N \binom{N^2}{k} = \binom{2N}{N}.$$

[Can use Double-counting, or Induction.]

B1: 135pts**B2:** 85pts**B3:** 55pts**Total:** 275pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague). Name/Signature/Ord*

Ord:

Ord:

Ord: