

Staple!

NT-Cryptography
MAT4930 7554

Home-B

Prof. JLF King
Touch: 2Jul2018**BoC, Monday, 17Mar2014.** Please fill-in every blank on this sheet.
.....**B1:** Show no work. Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.**a** Alice publishes her ElGamal triple: Modulus $M := 997$, base $G := 174$, and value $V := \langle G^\alpha \rangle_M = 609$, where α is her secret key. (She picks α in $[2..R]$, where $R = 498$ is the order of the subgp gen. by G .) Bob has a message $s \in [0..M]$. He picks an ephemeral $\beta \in [1..R]$, then transmits (C, D) where $C := \langle G^\beta \rangle_M = 88$ and $D := \langle s \cdot V^\beta \rangle_M = 99$. Alice knows that $\alpha = 27$, so she decodes $s =$
.....**b** The Huffman code with letter-probabilities

$$I: \frac{12}{66} \quad \mathcal{M}: \frac{5}{66} \quad O: \frac{7}{66} \quad \mathcal{R}: \frac{4}{66} \quad S: \frac{32}{66} \quad T: \frac{6}{66}$$

codes these to bitstrings: $I:$ $\mathcal{M}:$
 $O:$ $\mathcal{R}:$ $S:$ $T:$

Bitstring 11011011110011001110 decodes to

, answering: "What is Big Moose's name?"
.....**c** So $z =$ is the smallest natnum satisfying

$$z \equiv_7 -2, \quad z \equiv_8 -1, \quad z \equiv_{11} 5, \quad z \equiv_{15} 12.$$

OYOP: Your 2 essay(s) must be TYPED, and Double or Triple spaced. Use the Print/Revise cycle to produce good, well thought out, essays. Start each essay on a new sheet.Do not restate the problem; just solve it.**B2:** Magic integers $G_1 =$, $G_2 =$,
 $G_3 =$, $G_4 =$, each in $[0..1260)$,
are st. $g: \mathbb{Z}_7 \times \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \rightarrow \mathbb{Z}_{1260}$ is a ring-iso, where

$$g((z_1, z_2, z_3, z_4)) := \left\langle z_1 G_1 + z_2 G_2 + z_3 G_3 + z_4 G_4 \right\rangle_{1260}.$$

Now consider poly $h(x) := [x+59][x-1][x+83]$. Find all solutions to congruences $h(x) \equiv_M 0$, for $M = 7, 4, 9, 5$,displaying the results in a nice table. (Do **not** show work for this step.)Now use your ring-iso to compute *all* solns x to $\boxed{h(x) \equiv_{1260} 0}$, displaying the results in a table which shows which 4tuple each came from. There are (not counting multiplicities) $K :=$ many solns.Explain your method well; then show **one** computation giving a root different (mod 1260) from -59, 1, -83.**B3:** The building block of a cryptosystem uses *N-cloned* numbers, for large values of N . (Defns are below.)**i** Prove: For each positive integer N , that there exists an *N-cloned* number.**ii** Produce (with proof, 'natch) a 5-cloned number $V =$ (A little extra credit: Can you prove that your V is the *smallest* 5-cloned number?)**Defns.** An integer S is *twinned* if it is divisible by some member of $\{4, 9, 16, 25, 36, \dots\}$; otherwise S is *twin*. (E.g 0, -8, 600 are twinned, and 1, 130, -77 are twin.)For N, S posints, our S is "*N-cloned*" if each member of $\{S + j\}_{j=0}^{N-1}$ is twinned. E.g., $S=8$ is 2-cloned but not 3-cloned. Ditto $S=27$.**B1:** 90pts**B2:** 85pts**B3:** 115pts

Not typed/double-spaced: -25pts

Total: 290pts**HONOR CODE:** "I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/OrdOrd: Ord: Ord: