

Staple!

Sets and Logic
MHF3202 17HE

Class-B

Prof. JLF King
Wednesday, 26Oct2022

Ord: _____

B4: Short answer. Show no work. Write LARGE.Write DNE if the object does not exist or the operation cannot be performed. NB: $\mathbf{DNE} \neq \{\} \neq 0$.**a** For a LOR (letter-of-recommendation), Prof. K requires two courses, or a Special Topics or graduate course Circle

Yes

True

Darn tootin'!

b Mimicking what we did in class: From the 987×200 game-board, cut-out (remove) the $(35, 150)$ -cell and one other cell at $P = (x, y)$. Circle those choices for P , $(150, 160), (14, 35), (66, 77), (195, 15), (123, 4)$ which, if removed, would leave a board that *definitely* can not be domino-tiled.**c** Both \sim and \bowtie are equiv-relations on a set Ω . Define binrels **I** and **U** on Ω as follows.Define $\omega \mathbf{U} \lambda$ IFF Either $\omega \sim \lambda$ or $\omega \bowtie \lambda$ [or both].Define $\omega \mathbf{I} \lambda$ IFF Both $\omega \sim \lambda$ and $\omega \bowtie \lambda$.So "**U** is an equiv-relation" is: T FSo "**I** is an equiv-relation" is: T F**d** Let δ_N be the number of derangements of $[1..N]$, and $P_N := \frac{\delta_N}{N!}$ the probability that an N -perm is a derangement. Written in Incl-Excl notation (the formula we derived in class), $\delta_{17} =$
Limit $\left[\lim_{N \rightarrow \infty} P_N \right]$ equals
**e** On a 4-set, there are many equivalence relations.**f** Let \mathcal{P}_∞ denote the family of all *infinite* subsets of \mathbb{N} . Define relation \approx on \mathcal{P}_∞ by: $A \approx B$ IFF $A \cap B$ is infinite. Stmt "This \approx is an equivalence-relation" is: T FOYOP: In grammatical English **sentences**, write your essay on every 2nd line (usually), so I can easily write between the lines.**B5:** Consider a strict well-order \prec on set **U**, and a strict well-order \lessdot on **Γ**. Define binrel \ll on $\mathbf{U} \times \mathbf{Γ}$ by:

$$(b, \alpha) \ll (c, \beta)$$

IFF Either $b \prec c$ or $[b = c \text{ and } \alpha \lessdot \beta]$.Prove: Relation \ll is a well-order on $\mathbf{U} \times \mathbf{Γ}$.**B4:** _____ 105pts**B5:** _____ 40pts**Total:** _____ 145pts

NAME: _____

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor or TA."

Signature: _____