

Staple!

Sets and Logic
MHF3202 7860

Class-B

Prof. JLF King
Friday, 22Mar2024 5 10 10

b

The **Threeish-numbers** comprise $\mathcal{T} := 1 + 3\mathbb{N}$. \mathcal{T} -number $385 \stackrel{\text{note}}{=} 35 \cdot 11$ is \mathcal{T} -irreducible: \mathcal{T} (F)**B4:** Short answer. Show no work. Write LARGE.Write DNE if the object does not exist or the operation cannot be performed. NB: $\text{DNE} \neq \{\} \neq 0$.

a

For a LOR (letter-of-recommendation), Prof. K requires two courses, or a Special Topics [e.g, my NUMBER THEORY AND CRYPTOGRAPHY], or graduate course Circle:

Yes

True

Darn tootin'!

Irr Soln: False; $35 = 7 \cdot 5$. So $385 = 7 \cdot [5 \cdot 11]$ is a non-trivial Threeish-factorization of 385.Threeish $N := 85$ is not \mathcal{T} -prime because \mathcal{T} -numbers $J :=$ and $K :=$ satisfy that $N \bullet [J \cdot K]$, yet $N \nmid J$ and $N \nmid K$.**Prime Solution:** Say that an integer k is **3Neg** if $k \equiv_3 -1$, and **3Pos** if $k \equiv_3 +1$. Note $85 = 5 \cdot 17$ is a product of two 3Neg primes. We simply need to place one prime in J and the other in K . Hence a solution is $(J, K) := (5 \cdot 5, 17 \cdot 17)$.A more general soln is $(J, K) := (5p, 17q)$. where p, q are 3Neg numbers st. $p \nmid 17$ and $q \nmid 5$. Letting $p = q := 2$ yields $(J, K) := (10, 34)$ as the smallest soln.Also, \mathcal{T} -GCD(175, 70) = $\frac{7}{175} \cdot \frac{175}{70} = \frac{7}{70} = \frac{7}{7 \cdot 2} = 1$

10 **c** On a K -elt set Ω , the number $\#_K$ of **reflexive symmetric** binrels is $2^{\binom{K}{2}} = 2^{\frac{[K-1]K}{2}}$. In particular, $\#_5 = \dots$.

Counting: A refl-binrel owns all pairs (μ, μ) , for $\mu \in \Omega$. The # of 2-sets $\{\alpha, \beta\}$ is $\binom{K}{2}$. For each 2-set, either both pairs (α, β) and (β, α) are *in* the *symmetric* relation, or both are *out*; **two** choices, whence $2^{\binom{K}{2}}$ refl-symm binrels. Hence: $\#_5 = 2^{\binom{5}{2}} = 2^{10} = 1024$.

15 **d** On a 3-set, there are \dots many equiv.relations.

Partitions. Let P_n be the number of ptns having precisely n nv-atoms. Then $P_1 = \binom{3}{3} = 1$, $P_2 = \binom{3}{1,2} = 3$, $P_3 = \binom{3}{1,1,1}/3! = 1$.

URL https://en.wikipedia.org/wiki/Partition_of_a_set has examples of Partition Pictures. ♦

[Write your answer as a product of binomial coeffs, then compute the product as a single integer,]

Nomial Soln: Directly, $\binom{9}{4, 2, 3} = \frac{9!}{4! \cdot 2! \cdot 3!}$. Com-

$$\text{puting, } \binom{9}{4, 2, 3} = \binom{9}{4} \cdot \binom{5}{2} \cdot \binom{3}{3} = \frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{5 \cdot 4}{2 \cdot 1}.$$

$$\text{Hence, } \binom{9}{4, 2, 3} = 9 \cdot 2 \cdot 7 \cdot 5 \cdot 2 = [63 \cdot 2] \cdot 10 = 1260.$$

Lisp code:

(multinom-coeff 9 '(4 2 3)) => 1260

OYOP: In grammatical English **Sentences**, write each essay on every 2nd line (usually), so that I can easily write between the lines.

B5: Consider a strict well-order \prec on set \mathbf{U} , and a strict well-order $<$ on Γ . Define binrel \ll on $\mathbf{U} \times \Gamma$ by:

$$(b, \alpha) \ll (c, \beta)$$

IFF Either $b \prec c$ or $[b = c \text{ and } \alpha < \beta]$.

Prove: Relation \ll is a well-order on $\mathbf{U} \times \Gamma$.

[You may assume that \ll is a total-order.]

Well-order: Consider a non-empty subset $Q \subset \mathbf{U} \times \Gamma$. Extracting the 1st-elt of each ordered-pair, the set

$$\left\{ b \in \mathbf{U} \mid \exists \alpha \in \Gamma \text{ with } (b, \alpha) \in Q \right\}$$

is non-void, hence has a \prec -minimum elt; call it $\textcolor{brown}{m}$.

Extracting 2nd-elements, the set

$$\left\{ \beta \in \Gamma \mid (\textcolor{brown}{m}, \beta) \in Q \right\}$$

is non-void, so it has a $<$ -minimum elt which we'll call μ .

THE UPSHOT: Pair $(\textcolor{brown}{m}, \mu)$ is the \ll -minimum element of subset Q .

B6: Define: “On a set E , a binary relation ∇ is an **equivalence relation** IFF...”. Make sure to define any terms like “reflexive” that you use in your defn.!

Let \mathbb{P} be the set of ordered integer-pairs (n, d) , with $d \neq 0$. Define relation C on \mathbb{P} by

$$(N, D) C (x, y) \quad \text{IFF} \quad N \cdot y = x \cdot D.$$

Prove, in detail, that C is an equivalence relation.

[Only work in \mathbb{Z} ; do not use fractions.]

B4: _____ 95pts

B5: _____ 45pts

B6: _____ 45pts

Total: _____ 185pts

NAME:
.....

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: *Energetic Student*
.....