

Staple!

Sets and Logic
MHF3202 7860

Class-B

Prof. JLF King
Friday, 22Mar2024

Ord: _____

B4: Short answer. Show no work. Write LARGE.Write DNE if the object does not exist or the operation cannot be performed. NB: $\text{DNE} \neq \{\} \neq 0$.**a** For a LOR (letter-of-recommendation), Prof. K requires two courses, or a Special Topics [e.g, my NUMBER THEORY AND CRYPTOGRAPHY], or graduate course Circle:

Yes

True

Darn tootin'!

b The *Threeish-numbers* comprise $\mathcal{T} := 1 + 3\mathbb{N}$.
 \mathcal{T} -number $385 \stackrel{\text{note}}{=} 35 \cdot 11$ is \mathcal{T} -irreducible: $\mathcal{T} \subsetneq F$ Threeish $N := 85$ is not \mathcal{T} -prime because \mathcal{T} -numbers $J := \dots$ and $K := \dots$ satisfythat $N \nmid [J \cdot K]$, yet $N \nmid J$ and $N \nmid K$.Also, \mathcal{T} -GCD(175, 70) = \dots .**c** On a K -elt set Ω , the number $\#_K$ of **reflexive symmetric** binrels is \dots .In particular, $\#_5 = \dots$.**d** On a 3-set, there are \dots many equiv.relations.**e** Multinomial $\binom{9}{4, 2, 3} = \dots = \dots$

[Write your answer as a product of binomial coeffs, then compute the product as a single integer,]

OYOP: *In grammatical English sentences, write each essay on every 2nd line (usually), so that I can easily write between the lines.***B5:** Consider a strict well-order \prec on set U , and a strict well-order \lessdot on Γ . Define binrel \ll on $U \times \Gamma$ by:

$$(b, \alpha) \ll (c, \beta)$$

IFF Either $b \prec c$ or $[b = c \text{ and } \alpha \lessdot \beta]$.Prove: Relation \ll is a well-order on $U \times \Gamma$.[You may assume that \ll is a total-order.]**B6:** Define: “On a set E , a binary relation ∇ is an **equivalence relation** IFF...”. Make sure to define any terms like “reflexive” that you use in your defn.!Let \mathbb{P} be the set of ordered integer-pairs (n, d) , with $d \neq 0$. Define relation C on \mathbb{P} by

$$(N, D) C (x, y) \text{ IFF } N \cdot y = x \cdot D.$$

Prove, in detail, that C is an equivalence relation.**B4:** _____ 95pts**B5:** _____ 45pts**B6:** _____ 45pts**Total:** _____ 185pts

NAME: _____

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: _____