

Plex
MAA4402 2838

More-Prac-B

Prof. JLF King
Wedn, 08Mar2023**NB.** For short-answer: Write **DNE** if the object does not exist or the operation cannot be performed. NB: $\text{DNE} \neq \{ \} \neq 0$.Let **holom** abbreviate “holomorphic”, and **harm.fnc** abbreviate “harmonic function”. Use **PS**=Power Series, **RoC**=Radius-of-Convergence, and **MacSe** for “Maclaurin series”; a PS centered at 0. [Below, **ITOf** means “In Terms Of”].**B1:** Short answer. Show no work.**a** The IOP (Individual Optional Project) must be carefully TYPESET. It is due by **2PM on Thursday, 27Apr2023**, slid completely under my office door, **Little Hall 402** (northeast corner of top floor) **Circle**: Yes Cool! Thanks**b** Subset $K \subset \mathbb{C}$ is **compact** if: _____

c On a subset $G \subset \mathbb{C}$, consider two cts parametrizations $\gamma, \sigma: [0, 1] \rightarrow G$ which are loops; $\gamma(0) = \gamma(1)$ and $\sigma(0) = \sigma(1)$. A “**homotopy** in G from γ to σ ” is _____

d Write $\cos(-2i)$, which is real,
ITOf $\exp()$ and *finite*
add/sub/mul/div: $\cos(-2i) =$ _____And $\cos(-2i)$ lies in **circle the correct interval**
 $(-\infty, -\frac{1}{5}]$ $(-\frac{1}{5}, \frac{1}{5}]$ $(\frac{1}{5}, 2]$ $(2, 5]$ $(5, 15]$ $(15, 45]$ $(45, \infty)$ **e** Compute $\int_0^{2\pi} \frac{1}{\cos(\theta) + 6} d\theta =$ _____
[Hint: $\text{CoV } z = e^{i\theta}$.]OYOP: In grammatical English **sentences**, write your essay on every 2nd line (usually), so I can easily write between the lines.**B2:** Below, $h: \mathbb{C} \rightarrow \mathbb{C}$, and $S \subset \mathbb{C}$ is a closed-curve, and $w \in \mathbb{C}$ is an appropriate point.**α** Detailing the precise conditions needed on h , S and w , carefully state the Cauchy Integral Formula Theorem.**β** Recall the Cauchy Homotopy Thm: Suppose closed-curves S and R are homotopic in an open set on which a fnc f is holomorphic. Then $\oint_S f = \oint_R f$.

Use the above CHT to give a formal proof of the Cauchy Integral Formula Theorem. Also draw LARGE pictures showing the ideas in the proof.

NAME: _____

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: _____