

Staple!

Team: _____

Linear Algebra
MAS4105 5441

A-Home

Prof. JLF King
Touch: 6May2016

Please. General instructions are on the CHECKLIST. Page numbers without citation refer to our textbook. Each member of the team must retain a *complete copy* of the team's problem-sheet and write-up, including diagrams. Exam is due by 4:30PM Tuesday, 27Sep. Do **not** approx.: If your result is "sin($\sqrt{\pi}$)" then write that rather than .9797... Use "f(x) notation" when writing fncs; in particular, for trig and log fncs. E.g., write "sin(x)" rather than the horrible $\sin x$ or $[\sin x]$. Write expressions unambiguously e.g., "1/a + b" should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with **negative** signs!)

A1: Short answer: Show no work. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

z If $\lim_{x \rightarrow 0^+} 8/x$ equals ∞ , then $\lim_{x \rightarrow 0^+} 5/x$ is Circle:

C

C

C

a A 2×2 matrix E has $E^2 = \mathbf{0}$ (the zero-matrix). Then E itself must be $\mathbf{0}$. Circle: **T** **F**

b Let $M := \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Compute the 4105^{th} power of M .
 $M^{4105} =$

c Suppose A , B and C are invertible $N \times N$ matrices. Express the following matrix as a product of terms A^{-1} , B^{-1} , and C^{-1} (raised to various powers): $[AB^2C^5AC^3]^{-1} =$

d,e Determine the inverse to $D := \begin{bmatrix} 0 & -5 & 2 \\ 2 & -15 & 5 \\ -1 & 9 & -3 \end{bmatrix}$ using RREF.
 $D^{-1} =$

A2: Consider these two 2×2 matrices:

$$R := \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} \quad \text{and} \quad A := \frac{\sqrt{2}}{2} \cdot \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

Determine the matrix $[RA]^{5441}$ via any method, and fill in the entries of the 2×2 blank matrix below. *Show no work*.

$$[RA]^{5441} = \begin{bmatrix} & \\ & \end{bmatrix}.$$

[Hint: You don't need multiply matrices. Think of the linear trns that these matrices represent.]

A3: Let $S := \sqrt{3}$ and $K := \{q + rS \mid q, r \in \mathbb{Q}\}$. Prove that K is a field (see appendix). The crux is showing that $\frac{1}{q+rS}$ is in K .

A4: Let $M := \begin{bmatrix} 1 & 5 & -1 \\ 3 & 0 & -6 \\ -2 & -1 & 1 \end{bmatrix}$. Viewing M as a *rational* matrix, compute:

A basis \mathcal{R} for $\text{RowNullspace}(M)$.

A basis \mathcal{C} for $\text{ColSpan}(M)$. Now write each M -col as an *explicit* linear-comb. of vectors in your \mathcal{C} .

Finally, interpret M as a \mathbb{Z}_7 -matrix, and answer the same three questions.

A5: Solve (prove) #11P.85 concerning $\begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$.

End of A-Home

A1:	<u> </u>	60pts
A2:	<u> </u>	30pts
A3:	<u> </u>	50pts
A4:	<u> </u>	60pts
A5:	<u> </u>	55pts

Total: 255pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/Ord*

Ord:Ord:Ord: