

Due **BoC, Wedn, 07Feb2024**, wATMP! Print this problem-sheet; it is the first page of your write-up, with the blanks filled in (handwritten). Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE $\neq \{\} \neq 0$** . [Put ordinal, Team-# and sign HONOR CODE.]

A1: Show no work.

a Compute the real $\alpha =$ such that

$$* \quad 3^\alpha \cdot \sum_{k=0}^{4000} \binom{4000}{k} 2^k = \sum_{j=0}^{1995} \binom{1995}{j} 8^j.$$

[Hint: The Binomial Theorem]

b $\forall x, z \in \mathbb{Z}$ with $x < z$, $\exists y \in \mathbb{Z}$ st.: $x < y < z$. $T \quad F$

$\forall x, z \in \mathbb{Q}$ with $x \neq z$, $\exists y \in \mathbb{R}$ st.: $x < y < z$. $T \quad F$

For all sets Ω , there exists a fnc $f: \mathbb{R} \rightarrow \Omega$. $T \quad F$

c The number of ways of picking 42 objects from 70 types is $\binom{70}{42}$ Binom coeff And

$\binom{70}{42} = \binom{T}{K}$, where $T =$ $\neq 70$, and $K =$

Carefully TYPE your two essays, double-spaced. I suggest LATEX.

A2: Let \mathbf{E}_n be the equilateral triangle with side-length 2^n . This \mathbf{E}_n can be tiled in an obvious way by 4^n many little-triangles [copies of \mathbf{E}_0]; see picture on blackboard. The “punctured \mathbf{E}_n ”, written $\widetilde{\mathbf{E}}_n$, has its topmost copy of \mathbf{E}_0 removed.

A (trape)zoid, \mathbf{T} , comprises three copies of \mathbf{E}_0 glued together in a row, rightside-up, upside-down, rightside-up. [A zoid-tiling allows all six rotations of \mathbf{T} .]

i PROVE: For each n , board $\widetilde{\mathbf{E}}_n$ admits a zoid-tiling.

ii Let Δ_k be the equilateral triangle of sidelength k ; so \mathbf{E}_n is Δ_{2^n} . Triangle Δ_k comprises k^2 little-triangles.

For what values of k does Δ_k admit a zoid-tiling?

For which k does $\widetilde{\Delta}_k$ admit a zoid-tiling?

iii An **Lmino** (pron. “ell-mino”) comprises three squares in an “L” shape (all four orientations are allowed).

Let \mathbf{S}_n be the $2^n \times 2^n$ square board, comprising 4^n **squareis** (little squares). Have $\widetilde{\mathbf{S}}_n$ be the board with one corner square removed. Shown in class is an inductive

Team A

proof that each $\widetilde{\mathbf{S}}_n$ is Lmino-tilable (by $[4^n - 1]/3$ Lminos, of course). Further, with \mathbf{S}'_n denoting \mathbf{S}_n with an arbitrary puncture, we proved that every \mathbf{S}'_n is Lmino-tilable.

Generalize this to three-dimensions. Let \mathbf{C}_n denote the $2^n \times 2^n \times 2^n$ cube, \mathbf{C}_n the corner-punctured cube, and let \mathbf{C}'_n be \mathbf{C}_n but with an arbitrary **cubie** removed.

What is the 3-dimensional analog of an Lmino? Calling it a “3-mino”, how many cubies does it have? [Provide a drawing of your 3-mino.] PROVE: Every \mathbf{C}'_n admits a 3-mino-tiling. [Provide also pictures showing your ideas.]

iv Generalize to K -dim(ensional) space, with $\mathbf{C}_{n,K}$ being the $2^n \times \dots \times 2^n$ cube, having $[2^n]^K = 2^{nK}$ many K -dim’al cubies. As before, let $\mathbf{C}'_{n,K}$ be $\mathbf{C}_{n,K}$ with an arbitrary cubie removed.

What is your K -mino with which you will tile, and how many cubies does it have? (So a 2-mino is our Lmino.) PROVE: Every $\mathbf{C}'_{n,K}$ admits a K -mino-tiling.

A3: An integer-valued list $\mathcal{L} := (n_1, n_2, n_3, \dots, n_9)$ is indexed by interval-of-integers $J := [1..9]$.

This J has non-void subsets.

And J has non-void subintervals. (Note: $[4..6]$ is a length-3 subinterval, and $[8..8]$ is a length-1 subinterval.)

a Use PHP [Pigeon-hole Principle] to prove for each \mathcal{L} as above that: There exists a non-void set $\Omega \subset J$ of indices, such that $\sum_{j \in \Omega} n_j \mid 9$. You may use \equiv for \equiv_9 i.e, congruence mod-9.

b Produce an *interesting* generalization/companion of the above the PHP problem, then solve it.

A1: 75pts

A2: 165pts

A3: 80pts

Total: 320pts

HONOR CODE: “I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).” Name/Signature/Ord

Ord:

Ord:

Ord: