

Due **BoC, Monday, 24Sep2018, wATMP!**
Please *fill-in* every *blank* on this sheet. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

A1: Show no work. Simply fill-in each blank on the problem-sheet.

a [With $\mathcal{P}()$ the *powerset* operator, let $S := 3\text{-stooges.}$] Then $|\mathcal{P}(S)| = \underline{\dots\dots\dots}$ and $|\mathcal{P}(\mathcal{P}(S))| = \underline{\dots\dots\dots}$.

b Using *only* symbols **$H, D, \wedge, \vee, \neg, T, F$** , [,] , rewrite (in simplest form) expression $[[H \Rightarrow D] \Rightarrow H]$ as $\underline{\dots\dots\dots}$. Ditto, rewrite $[H \Rightarrow [D \Rightarrow H]]$ as $\underline{\dots\dots\dots}$.

c $\forall x, z \in \mathbb{Z}$ with $x < z$, $\exists y \in \mathbb{Z}$ st.: $x < y < z$. $T \quad F$
 $\forall x, z \in \mathbb{Q}$ with $x \neq z$, $\exists y \in \mathbb{R}$ st.: $x < y < z$. $T \quad F$
For all sets Ω , there exists a fnc $f: \mathbb{R} \rightarrow \Omega$. $T \quad F$

d The coeff of $x^7 y^{12}$ in $[5x + y^3 + 1]^{30}$ is $\underline{\dots\dots\dots}$.

[You may write in form number times multinomial-coeff. You can leave the multinomial-coeff as such, or write ITOf factorials.]

e The number of ways of picking 42 objects from 70 types is $\binom{70}{42} \stackrel{\text{Binom}}{\underset{\text{coeff}}{=}} \underline{\dots\dots\dots}$. And

$\llbracket \begin{smallmatrix} 70 \\ 42 \end{smallmatrix} \rrbracket = \llbracket \begin{smallmatrix} T \\ N \end{smallmatrix} \rrbracket$, where $T = \underline{\dots\dots\dots} \neq 70$, and $N = \underline{\dots\dots\dots}$.

For the two essay questions, carefully TYPE, double-or-triple-spaced, grammatical solns. I suggest LATEX, but other systems are ok too.

A2: **i** On a 7×7 chessboard, 22 rooks are placed. Prove there exists a **friendly** 4-set of rooks. [I.e, on 4 distinct rows and on 4 distinct columns. Shorthand: You may use *clump* for “friendly 4-set.”] Illustrate the concepts in your proof with large, useful Pictures. [Hint: PHP]

ii On a 7×7 chessboard, 23 rooks are placed. Prove: **Either** there exists a friendly 5-set, or a disjoint-pair of

friendly 4-sets. [An n -set of rooks is **friendly** if the rooks lie on n distinct rows, and n distinct columns. Shorthand: You may use *double-clump* for “disjoint-pair of friendly 4-sets.”]

STRONGER: Prove there *always* exists a double-clump, unconditionally.

A3: Define a sequence $\vec{b} = (b_0, b_1, b_2, \dots)$ by $b_0 := 0$ and $b_1 := 3$ and

$$\dagger: \quad b_{n+2} := 7b_{n+1} - 10b_n, \quad \text{for } n = 0, 1, \dots$$

Use induction to prove, for each natnum k , that

$$\ddagger: \quad b_k = 5^k - 2^k.$$

Further: Given recurrence (\dagger) and initial conditions, *explain* how you could have discovered/computed the numbers 5 and 2 in the (\ddagger) formula.

Can you generalize to getting a (\ddagger) -like formula when the recurrence is $\boxed{b_{n+2} := \mathbf{S}b_{n+1} - \mathbf{P}b_n}$, for arbitrary real-number coefficients \mathbf{S} and \mathbf{P} ?

End of Home-A

A1: 140pts

A2: 90pts

A3: 60pts

Total: 290pts