

Staple!

Sets and Logic
MHF3202 17HE

Class-A

Prof. JLF King
Monday, 03Oct2022

Ord: _____

A4: Short answer. Show no work. Write LARGE.Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.**a** Prof. King thinks that submitting a ROBERT LONG PRIZE ESSAY [typically 2 prizes, \$500 total] is a *really good idea*. A ten-page essay is fine. Date for the emailed-PDF is mid-March, 2023.Circle: Yes True **Résumé material!****b** Compute the real $\alpha =$ _____ such that

$$* \quad 3^\alpha \cdot \sum_{k=0}^{4050} \binom{4050}{k} 2^k = \sum_{j=0}^{2022} \binom{2022}{j} 8^j.$$

[Hint: The Binomial Theorem]

c Note that $\text{GCD}(55, 33, 15) = 1$. Find particular integers S, T, U so that $55S + 33T + 15U = 1$:

$$S = \text{_____}, \quad T = \text{_____}, \quad U = \text{_____}.$$

[Hint: $\text{GCD}(\text{GCD}(55, 33), 15) = 1$.]**d** On a K -elt set Ω , the number $\#_K$ of **reflexive symmetric** binrels is _____.In particular, $\#_5 =$ _____.

On a 3-set, there are _____ many equiv.relations.

e The physics lab has atomic *zinc, tin, silver and gold*. I'm allowed to take 6 atoms, so I have [expressed as single integer] many possibilities.This number *also* equals the number-of-ways of picking K candies from T many types of candy, where $K =$ _____ $\notin \{1, 6\}$ and $T =$ _____ $\notin \{1, 4\}$.OYOP: In grammatical English **sentences**, write your essay on every 2nd line (usually), so I can easily write between the lines.**A5:** An **Lmino** (pron. "ell-mino") comprises three squares in an "L" shape (all four orientations are allowed). For natnum N , let \mathbf{R}_N denote the $3 \times N$ board: I.e., is the \mathbf{R}_5 board. Prove:*Theorem: When N is odd, then board \mathbf{R}_N is not Lmino-tilable.*You will likely want to first *state* and *prove* a Lemma. Now use appropriate induction on N to prove the thm. Also: *Illustrate your proof* with (probably several) large, *labeled* pictures.When N is even, our \mathbf{R}_N has exactly _____ many Lmino-tilings.**A4:** _____ 110pts**A5:** _____ 55pts**Total:** _____ 165pts

NAME: _____

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor or TA."*

Signature: _____