

Staple!

Sets and Logic
MHF3202 12A3

Class-A

Prof. JLF King
22 Oct. 2021**A4:** Short answer. Show no work.Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.

a Prof. King thinks that submitting a ROBERT LONG PRIZE ESSAY [typically 2 prizes, \$500 total] is a *really good idea*. A ten-page essay is fine. Date for the emailed-PDF is Sunday, March 27, 2022.

Circle: Yes True

Résumé material!

b In $[5x^2 + 4y + z^3 + 7]^{20}$,
compute these coeffs:

Coeff($x^6 z^8$) =

.....

Coeff($y^5 z^6$) =

.....

[You may write answers as a product numbers, powers and multinomial-coeffs.]

c Write $N := 36300$ as a PoPP [Product of Prime Powers],
 $N \stackrel{\text{PoPP}}{=} \dots \dots \dots$. Hence the number of
 (positive) divisors of N is $\tau(N) = \dots \dots \dots$.

d Suppose that \prec is a total-order on set \mathcal{S} , and \lessdot is total-order on set Ω , both strict. Define binrel \ll on $\mathcal{S} \times \Omega$ by:

$$(b, \beta) \ll (c, \gamma)$$

IFF Either $b \prec c$ or $[b = c \text{ and } \beta \lessdot \gamma]$.

Then:

Relation \ll is a total-order.

T F

Suppose \prec and \lessdot are each well-orders.Then \ll is a well-order.

T F

e Mimicking what we did in class: From the 987×200 game-board, cut-out (remove) the $(35, 150)$ -cell and one other cell at $P = (x, y)$. Circle those choices for P ,

$$(150, 160), (14, 35), (66, 77), (195, 15), (123, 4)$$

which, if removed, would leave a board that *definitely cannot* be domino-tiled.

f Both \sim and \bowtie are equiv-relations on a set Ω . Define binrels **I** and **U** on Ω as follows.

Define $\omega \mathbf{U} \lambda$ IFF Either $\omega \sim \lambda$ or $\omega \bowtie \lambda$ [or both].Define $\omega \mathbf{I} \lambda$ IFF Both $\omega \sim \lambda$ and $\omega \bowtie \lambda$.So "**U** is an equiv-relation" is:

T F

So "**I** is an equiv-relation" is:

T F

OYOP: In grammatical English **Sentences**, write your essays on every 2nd line (usually), so I can easily write between the lines.

A5: An **Lmino** (pron. “ell-mino”) comprises three squares in an “L” shape (all four orientations are allowed). For natnum N , let \mathbf{R}_N denote the $3 \times N$ board: I.e.,  is the \mathbf{R}_5 board. Prove:

Theorem: When N is odd, then board \mathbf{R}_N is not Lmino-tilable.

You will likely want to first *state* and *prove* a Lemma. Now use appropriate induction on N to prove the thm. Also: *Illustrate your proof* with (probably several) large, *labeled* pictures.

When N is even, our \mathbf{R}_N has exactly many Lmino-tilings.

A4: 110pts**A5:** 55pts**Total:** 165pts

NAME:

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature: