

Two-page Technique (Map / Computation)

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 12 January, 2024 (at 08:24)

Challenge: Compute Re and Im of $\sum_{k=3}^{88} [1+i]^k$.

M: Initial plan:

a: Give symbolic names to quantities. If reasonable, draw the Argand plane with $[1+i]$ plotted; maybe also, the first few $[1+i]$ powers plotted.

b: Remember, or derive, how to sum geometric series.

Letting $B := [1+i]$, $U := 88$ and $L := 3$, we seek to compute

$$\dagger: \quad S := \sum_{k=L}^U B^k.$$

We learned geometric series in form $\sum_{n=0}^N R^n$. So we rewrite (\dagger) as

$$\ddagger: \quad S = \sum_{k=L}^{L+N} B^k \stackrel{\text{note}}{=} B^L \cdot \sum_{n=0}^N B^n,$$

where $N := U - L$.

C: With $N = U - L = 88 - 3 = 85$, we will compute

$$\ddagger c: \quad S = [1+i]^3 \cdot \sum_{n=0}^{85} [1+i]^n.$$

M: Alas, I don't remember the formula for $\sum_{n=0}^N R^n$, so I'll derive it. First, let's name this sum; can't use S [already in use], so I'll use T . With $T := \sum_{n=0}^N R^n$, note

$$\begin{aligned} [R-1] \cdot T &= RT - T \\ &= R^{N+1} + R^N + R^{N-1} + \dots + R^2 + R \\ &\quad - [R^N + R^{N-1} + \dots + R^2 + R + 1] \\ &\stackrel{\text{note}}{=} R^{N+1} - 1. \end{aligned}$$

If $R \neq 1$, we may divide by $R - 1$, giving

$$\ast: \quad T = \frac{R^{N+1} - 1}{R - 1}.$$

C: Since $[1+i] \neq 1$, we may use (\ast) , giving

$$\begin{aligned} \ast c: \quad S &= [1+i]^3 \cdot \frac{[1+i]^{85+1} - 1}{[1+i] - 1} \\ &\stackrel{\text{note}}{=} [1+i]^3 \cdot \frac{[1+i]^{86} - 1}{i} \\ &\stackrel{\text{note}}{=} -i \cdot [1+i]^3 \cdot [[1+i]^{86} - 1]. \end{aligned}$$

M: We've reduced the Challenge to computing a power of a complex-number. Writing the number in polar form as $r e^{i\theta}$ with $r \geq 0$ and $\theta \in \mathbb{R}$, its K^{th} -power is

$$\ast \ast: \quad [r e^{i\theta}]^K = r^K \cdot \exp(i K \theta).$$

C: We could use $(\ast \ast)$ to finish. Here, the specific base B allows us to proceed differently. We notice that $[1+i]^2 = 2i$. Thus $B^{86} = 2^{43} \cdot i^{43}$. Multipl-by- i is periodic, with period 4, so $i^{43} = -i$. Thus,

$$[1+i]^{86} - 1 = -[1 + 2^{43}i].$$

Our $(\ast c)$ hands us

$$S = i \cdot [1+i]^3 \cdot [1 + \mu i], \quad \text{where}$$

we've abbreviated the multiplier by $\mu := 2^{43}$.

LAST STEP: A bit of elbow-grease yields

$$\begin{aligned} [1+i]^3 &= i^3 + 3i + 3i^2 + 1 = 2i - 2. \quad \text{So} \\ i \cdot [1+i]^3 &= 2 \cdot [-1 - i]. \end{aligned}$$

Consequently,

$$S = 2 \cdot [-1 - i] \cdot [1 + \mu i].$$

Energetic Reader can now multiply this out, compute real and imaginary parts, and –lastly– substitute 2^{43} for μ as the final step. *Nifty cool!*

C: Easily, $[-1 - i] \cdot [1 + \mu i] = [\mu - 1] - [\mu + 1]i$. Our μ is real, and thus

$$\operatorname{Re}(S) = 2 \cdot [\mu - 1] = 2^{44} - 2, \quad \text{and}$$

$$\operatorname{Im}(S) = 2 \cdot [-\mu - 1] = -2^{44} - 2.$$

An Elegant answer to a Nice problem ...